小数据集GAN训练中图像空间分布分析

Lucas F. Buzuti, T. Heiderich, C.E.P. Thomaz
{"title":"小数据集GAN训练中图像空间分布分析","authors":"Lucas F. Buzuti, T. Heiderich, C.E.P. Thomaz","doi":"10.5753/eniac.2022.227413","DOIUrl":null,"url":null,"abstract":"Redes Adversárias Generativas (GANs) estão sendo cada vez mais usadas para gerar artificialmente vários tipos de dados. O treinamento dessas redes requer um conjunto de dados suficientemente grande e se torna um desafio com pequenos conjuntos. Trabalhos recentes propuseram novas abordagens para o treinamento de GANs com poucas amostras. Este trabalho analisa a distribuição espacial dos dados reais e sintéticos desses conjuntos, construindo subespaços de forma aleatória e variando o nível de espalhamento. Para variar o nível de espalhamento, este trabalho propõe o algoritmo k-Amostras Esparsas. Os resultados mostraram que pequenos conjuntos com uma distribuição espacial mais espalhada tendem a gerar dados com mais diversidade.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Distribution Analysis of Images in GAN Training with Small Datasets\",\"authors\":\"Lucas F. Buzuti, T. Heiderich, C.E.P. Thomaz\",\"doi\":\"10.5753/eniac.2022.227413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Redes Adversárias Generativas (GANs) estão sendo cada vez mais usadas para gerar artificialmente vários tipos de dados. O treinamento dessas redes requer um conjunto de dados suficientemente grande e se torna um desafio com pequenos conjuntos. Trabalhos recentes propuseram novas abordagens para o treinamento de GANs com poucas amostras. Este trabalho analisa a distribuição espacial dos dados reais e sintéticos desses conjuntos, construindo subespaços de forma aleatória e variando o nível de espalhamento. Para variar o nível de espalhamento, este trabalho propõe o algoritmo k-Amostras Esparsas. Os resultados mostraram que pequenos conjuntos com uma distribuição espacial mais espalhada tendem a gerar dados com mais diversidade.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成对手网络(gan)越来越多地被用来人工生成各种类型的数据。这些网络的训练需要足够大的数据集,而小数据集则是一个挑战。最近的研究提出了用少量样本训练gan的新方法。本文分析了这些集合的真实数据和合成数据的空间分布,随机构建子空间,改变传播水平。为了改变传播水平,本文提出了稀疏k样本算法。结果表明,空间分布更分散的小集往往产生更多样化的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Distribution Analysis of Images in GAN Training with Small Datasets
Redes Adversárias Generativas (GANs) estão sendo cada vez mais usadas para gerar artificialmente vários tipos de dados. O treinamento dessas redes requer um conjunto de dados suficientemente grande e se torna um desafio com pequenos conjuntos. Trabalhos recentes propuseram novas abordagens para o treinamento de GANs com poucas amostras. Este trabalho analisa a distribuição espacial dos dados reais e sintéticos desses conjuntos, construindo subespaços de forma aleatória e variando o nível de espalhamento. Para variar o nível de espalhamento, este trabalho propõe o algoritmo k-Amostras Esparsas. Os resultados mostraram que pequenos conjuntos com uma distribuição espacial mais espalhada tendem a gerar dados com mais diversidade.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment Textile defect detection using YOLOv5 on AITEX Dataset Aspects of a learned model to predict the quality of life of university students in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1