约束聚类研究进展

Zijie Qi, Yinghui (Catherine) Yang
{"title":"约束聚类研究进展","authors":"Zijie Qi, Yinghui (Catherine) Yang","doi":"10.1109/ICDEW.2010.5452728","DOIUrl":null,"url":null,"abstract":"Constrained clustering (semi-supervised learning) techniques have attracted more attention in recent years. However, the commonly used constraints are restricted to the instance level, thus we introduced two new classifications for the type of constraints: decision constraints and non-decision constraints. We implemented applications involving non-decision constraints to find alternative clusterings. Due to the fact that randomly generated constraints might adversely impact the performance, we discussed the main reasons for carefully generating a subset of useful constraints, and defined two basic questions on how to generate useful constraints.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in constrained clustering\",\"authors\":\"Zijie Qi, Yinghui (Catherine) Yang\",\"doi\":\"10.1109/ICDEW.2010.5452728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constrained clustering (semi-supervised learning) techniques have attracted more attention in recent years. However, the commonly used constraints are restricted to the instance level, thus we introduced two new classifications for the type of constraints: decision constraints and non-decision constraints. We implemented applications involving non-decision constraints to find alternative clusterings. Due to the fact that randomly generated constraints might adversely impact the performance, we discussed the main reasons for carefully generating a subset of useful constraints, and defined two basic questions on how to generate useful constraints.\",\"PeriodicalId\":442345,\"journal\":{\"name\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2010.5452728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

约束聚类(半监督学习)技术近年来受到越来越多的关注。然而,常用的约束仅限于实例级别,因此我们为约束类型引入了两种新的分类:决策约束和非决策约束。我们实现了涉及非决策约束的应用程序,以查找备选聚类。由于随机生成的约束可能会对性能产生不利影响,因此我们讨论了仔细生成有用约束子集的主要原因,并定义了关于如何生成有用约束的两个基本问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in constrained clustering
Constrained clustering (semi-supervised learning) techniques have attracted more attention in recent years. However, the commonly used constraints are restricted to the instance level, thus we introduced two new classifications for the type of constraints: decision constraints and non-decision constraints. We implemented applications involving non-decision constraints to find alternative clusterings. Due to the fact that randomly generated constraints might adversely impact the performance, we discussed the main reasons for carefully generating a subset of useful constraints, and defined two basic questions on how to generate useful constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast algorithms for time series mining Ontology alignment argumentation with mutual dependency between arguments and mappings A first step towards integration independence Towards enterprise software as a service in the cloud U-DBSCAN : A density-based clustering algorithm for uncertain objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1