{"title":"3D打印散热器的遗传算法设计","authors":"Tong Wu, B. Ozpineci, C. Ayers","doi":"10.1109/APEC.2016.7468376","DOIUrl":null,"url":null,"abstract":"In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size and shape. This approach combines random iteration processes and genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers “survival of the fittest”, a more powerful heat sink can be designed which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due to their complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate the performance of the newly designed heat sink compared to commercially available heat sinks.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Genetic algorithm design of a 3D printed heat sink\",\"authors\":\"Tong Wu, B. Ozpineci, C. Ayers\",\"doi\":\"10.1109/APEC.2016.7468376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size and shape. This approach combines random iteration processes and genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers “survival of the fittest”, a more powerful heat sink can be designed which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due to their complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate the performance of the newly designed heat sink compared to commercially available heat sinks.\",\"PeriodicalId\":143091,\"journal\":{\"name\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2016.7468376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic algorithm design of a 3D printed heat sink
In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size and shape. This approach combines random iteration processes and genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers “survival of the fittest”, a more powerful heat sink can be designed which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due to their complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate the performance of the newly designed heat sink compared to commercially available heat sinks.