COPLE2语料库中的错误注释

Iria del Río, Amália Mendes
{"title":"COPLE2语料库中的错误注释","authors":"Iria del Río, Amália Mendes","doi":"10.26334//2183-9077/RAPLN4ANO2018A42","DOIUrl":null,"url":null,"abstract":"We present the general architecture of the error annotation system applied to the COPLE2 corpus, a learner corpus of Portuguese implemented on the TEITOK platform. We give a general overview of the corpus and of the TEITOK functionalities and describe how the error annotation is structured in a two-level system: first, a fully manual token-based and coarse-grained annotation is applied and produces a rough classification of the errors in three categories, paired with multi-level information for POS and lemma; second, a multi-word and fine-grained annotation in standoff is then semi-automatically produced based on the first level of annotation. The token-based level has been applied to 47% of the total corpus. We compare our system with other proposals of error annotation, and discuss the fine-grained tag set and the experiments to validate its applicability. An inter-annotator (IAA) experiment was performed on the two stages of our system using Cohen’s kappa and it achieved good results on both levels. We explore the possibilities offered by the tokenlevel error annotation, POS and lemma to automatically generate the fine-grained error tags by applying conversion scripts. The model is planned in such a way as to reduce manual effort and rapidly increase the coverage of the error annotation over the full corpus. As the first learner corpus of Portuguese with error annotation, we expect COPLE2 to support new research in different fields connected with Portuguese as second/foreign language, like Second Language Acquisition/Teaching or Computer Assisted Learning.","PeriodicalId":313789,"journal":{"name":"Revista da Associação Portuguesa de Linguística","volume":"13 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Error annotation in the COPLE2 corpus\",\"authors\":\"Iria del Río, Amália Mendes\",\"doi\":\"10.26334//2183-9077/RAPLN4ANO2018A42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the general architecture of the error annotation system applied to the COPLE2 corpus, a learner corpus of Portuguese implemented on the TEITOK platform. We give a general overview of the corpus and of the TEITOK functionalities and describe how the error annotation is structured in a two-level system: first, a fully manual token-based and coarse-grained annotation is applied and produces a rough classification of the errors in three categories, paired with multi-level information for POS and lemma; second, a multi-word and fine-grained annotation in standoff is then semi-automatically produced based on the first level of annotation. The token-based level has been applied to 47% of the total corpus. We compare our system with other proposals of error annotation, and discuss the fine-grained tag set and the experiments to validate its applicability. An inter-annotator (IAA) experiment was performed on the two stages of our system using Cohen’s kappa and it achieved good results on both levels. We explore the possibilities offered by the tokenlevel error annotation, POS and lemma to automatically generate the fine-grained error tags by applying conversion scripts. The model is planned in such a way as to reduce manual effort and rapidly increase the coverage of the error annotation over the full corpus. As the first learner corpus of Portuguese with error annotation, we expect COPLE2 to support new research in different fields connected with Portuguese as second/foreign language, like Second Language Acquisition/Teaching or Computer Assisted Learning.\",\"PeriodicalId\":313789,\"journal\":{\"name\":\"Revista da Associação Portuguesa de Linguística\",\"volume\":\"13 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista da Associação Portuguesa de Linguística\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26334//2183-9077/RAPLN4ANO2018A42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista da Associação Portuguesa de Linguística","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26334//2183-9077/RAPLN4ANO2018A42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了在TEITOK平台上实现的葡萄牙语学习者语料库COPLE2的错误标注系统的总体结构。我们给出了语料库和TEITOK功能的总体概述,并描述了如何在两级系统中构建错误注释:首先,应用完全手动的基于令牌的粗粒度注释,并将错误粗略分类为三类,并与POS和引理的多级信息配对;其次,在第一层注释的基础上,半自动地生成多词和细粒度的对峙注释。基于标记的水平已应用于总语料库的47%。我们将该系统与其他错误标注方案进行了比较,讨论了细粒度标记集,并通过实验验证了其适用性。利用Cohen’s kappa在系统的两个阶段上进行了inter-annotator (IAA)实验,在两个层面上都取得了良好的效果。我们探索了记号级错误注释、POS和引理提供的可能性,通过应用转换脚本自动生成细粒度错误标记。该模型以这样一种方式进行规划,即减少人工工作并迅速增加错误注释在整个语料库中的覆盖率。作为第一个带有错误注释的葡萄牙语学习者语料库,我们希望COPLE2能够支持与葡萄牙语作为第二语言/外语相关的不同领域的新研究,如第二语言习得/教学或计算机辅助学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error annotation in the COPLE2 corpus
We present the general architecture of the error annotation system applied to the COPLE2 corpus, a learner corpus of Portuguese implemented on the TEITOK platform. We give a general overview of the corpus and of the TEITOK functionalities and describe how the error annotation is structured in a two-level system: first, a fully manual token-based and coarse-grained annotation is applied and produces a rough classification of the errors in three categories, paired with multi-level information for POS and lemma; second, a multi-word and fine-grained annotation in standoff is then semi-automatically produced based on the first level of annotation. The token-based level has been applied to 47% of the total corpus. We compare our system with other proposals of error annotation, and discuss the fine-grained tag set and the experiments to validate its applicability. An inter-annotator (IAA) experiment was performed on the two stages of our system using Cohen’s kappa and it achieved good results on both levels. We explore the possibilities offered by the tokenlevel error annotation, POS and lemma to automatically generate the fine-grained error tags by applying conversion scripts. The model is planned in such a way as to reduce manual effort and rapidly increase the coverage of the error annotation over the full corpus. As the first learner corpus of Portuguese with error annotation, we expect COPLE2 to support new research in different fields connected with Portuguese as second/foreign language, like Second Language Acquisition/Teaching or Computer Assisted Learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
O que ainda não sabemos e precisávamos de saber para o ensino de Português Língua Não Materna Contrastando o português paulista e o português gaúcho: interpretação da formalidade dos pronomes sujeito de segunda pessoa do singular Compreensão de estruturas sintáticas com movimento A’ e com movimento A em crianças portuguesas surdas com implante coclear: efeitos da idade de início de exposição ao input linguístico e do tempo de exposição à língua Reconhecimento Automático Multilingue de Entidades Mencionadas em Diversos Domínios, para Efeitos de Anonimização de Tradução Automática Anotação de Entidades Mencionadas na área do Gaming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1