用于细间距互连的新型镓辅助低温键合技术

Shan-Bo Wang, An-Hsuan Hsu, C. Kao, D. Tarng, Chien-Lung Liang, Kwang-Lung Lin
{"title":"用于细间距互连的新型镓辅助低温键合技术","authors":"Shan-Bo Wang, An-Hsuan Hsu, C. Kao, D. Tarng, Chien-Lung Liang, Kwang-Lung Lin","doi":"10.1109/ectc51906.2022.00061","DOIUrl":null,"url":null,"abstract":"Thermal compression bonding (TCB) of Cu pillars at high temperature often induces undesirable warpage occurrence due to the mismatch in coefficient of thermal expansion (CTE) among heterogeneous components. Reducing the bonding temperature to avoid warpage is desirable for the development of Cu-to-Cu bonding in three-dimensional integrated circuit (3D IC) packaging.One of the approaches for lowering bonding temperature is to implement low melting temperature materials between Cu pillars. We presented in this article a novel low-temperature bonding technology for fine-pitch, less than 20 μm, Cu-to-Cu interconnects with Cu substrates. The TCB was conducted at 150°C. The low-temperature bonding was assisted by an electroplated intermediate Ga/X-alloy bilayer. The surface of the Ga layer was pre-treated with dilute sulfuric acid for better wetting behavior. The intermediate Ga layer melted and gave rise to liquid/solid interdiffusion with the X-alloy layer during the bonding according to the binary Ga-X-alloy phase diagram. The Ga component further diffused through the X-alloy layer and preferentially reacted with the Cu substrate to form thermodynamically stable CuGa2 intermetallic compound (IMC) at the Cu/X-alloy interface. The crosssectional scanning electron microscope (SEM) and focus ion beam (FIB) analyses indicated that the uniform IMC layer has around 2 μm in thickness. The energy dispersive X-ray spectroscopy (EDS) analysis showed that the electroplated Ga layer was completed consumed and mostly converted to interfacial IMC and partially dissolved in the X-alloy layer after the bonding. The microstructure characterization of the joint revealed an indistinct bonding interface with few impurities or defects, showing pronounced effect of interdiffusion during the bonding. The produced joint structure exhibited a bonding strength greater than 5 MPa as measured by a chip-scale universal testing machine. The low-temperature liquid/solid interdiffusion bonding process could be operated without the need of chemical mechanical polish (CMP). It is believed, basing on the bonding performance, that the Ga assisted low-temperature Cu-to-Cu bonding approach could be more feasible for new applications in fine-pitch 3D IC packaging.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Ga Assisted Low-temperature Bonding Technology for Fine-pitch Interconnects\",\"authors\":\"Shan-Bo Wang, An-Hsuan Hsu, C. Kao, D. Tarng, Chien-Lung Liang, Kwang-Lung Lin\",\"doi\":\"10.1109/ectc51906.2022.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal compression bonding (TCB) of Cu pillars at high temperature often induces undesirable warpage occurrence due to the mismatch in coefficient of thermal expansion (CTE) among heterogeneous components. Reducing the bonding temperature to avoid warpage is desirable for the development of Cu-to-Cu bonding in three-dimensional integrated circuit (3D IC) packaging.One of the approaches for lowering bonding temperature is to implement low melting temperature materials between Cu pillars. We presented in this article a novel low-temperature bonding technology for fine-pitch, less than 20 μm, Cu-to-Cu interconnects with Cu substrates. The TCB was conducted at 150°C. The low-temperature bonding was assisted by an electroplated intermediate Ga/X-alloy bilayer. The surface of the Ga layer was pre-treated with dilute sulfuric acid for better wetting behavior. The intermediate Ga layer melted and gave rise to liquid/solid interdiffusion with the X-alloy layer during the bonding according to the binary Ga-X-alloy phase diagram. The Ga component further diffused through the X-alloy layer and preferentially reacted with the Cu substrate to form thermodynamically stable CuGa2 intermetallic compound (IMC) at the Cu/X-alloy interface. The crosssectional scanning electron microscope (SEM) and focus ion beam (FIB) analyses indicated that the uniform IMC layer has around 2 μm in thickness. The energy dispersive X-ray spectroscopy (EDS) analysis showed that the electroplated Ga layer was completed consumed and mostly converted to interfacial IMC and partially dissolved in the X-alloy layer after the bonding. The microstructure characterization of the joint revealed an indistinct bonding interface with few impurities or defects, showing pronounced effect of interdiffusion during the bonding. The produced joint structure exhibited a bonding strength greater than 5 MPa as measured by a chip-scale universal testing machine. The low-temperature liquid/solid interdiffusion bonding process could be operated without the need of chemical mechanical polish (CMP). It is believed, basing on the bonding performance, that the Ga assisted low-temperature Cu-to-Cu bonding approach could be more feasible for new applications in fine-pitch 3D IC packaging.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高温下铜柱的热压缩键合(TCB)往往会由于非均质组分之间的热膨胀系数(CTE)不匹配而产生不良翘曲。降低键合温度以避免翘曲是三维集成电路(3D IC)封装中cu - cu键合的发展所需要的。降低键合温度的途径之一是在铜柱之间采用低熔点材料。在本文中,我们提出了一种新的低温键合技术,用于细间距(小于20 μm)的Cu-to-Cu衬底互连。TCB在150℃下进行。低温键合是通过电镀中间的Ga/ x合金双分子层来辅助的。为了获得更好的润湿性能,用稀硫酸对Ga层表面进行了预处理。根据二元Ga- x合金相图,在结合过程中,中间Ga层熔化并与x合金层发生液/固相互扩散。Ga组分进一步扩散穿过x合金层,并优先与Cu衬底反应,在Cu/ x合金界面形成热力学稳定的CuGa2金属间化合物(IMC)。扫描电镜(SEM)和聚焦离子束(FIB)分析表明,均匀的IMC层厚度约为2 μm。能谱分析(EDS)表明,电沉积的Ga层被完全消耗,大部分转化为界面IMC,并在键合后部分溶解在x合金层中。接头的微观结构表征表明,结合界面模糊,杂质和缺陷较少,在结合过程中表现出明显的相互扩散效应。通过芯片级万能试验机测试,所制备的接头结构的结合强度大于5 MPa。低温液/固互扩散粘接无需化学机械抛光(CMP)。基于键合性能,认为Ga辅助低温cu - cu键合方法在细间距3D集成电路封装中的新应用更加可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Ga Assisted Low-temperature Bonding Technology for Fine-pitch Interconnects
Thermal compression bonding (TCB) of Cu pillars at high temperature often induces undesirable warpage occurrence due to the mismatch in coefficient of thermal expansion (CTE) among heterogeneous components. Reducing the bonding temperature to avoid warpage is desirable for the development of Cu-to-Cu bonding in three-dimensional integrated circuit (3D IC) packaging.One of the approaches for lowering bonding temperature is to implement low melting temperature materials between Cu pillars. We presented in this article a novel low-temperature bonding technology for fine-pitch, less than 20 μm, Cu-to-Cu interconnects with Cu substrates. The TCB was conducted at 150°C. The low-temperature bonding was assisted by an electroplated intermediate Ga/X-alloy bilayer. The surface of the Ga layer was pre-treated with dilute sulfuric acid for better wetting behavior. The intermediate Ga layer melted and gave rise to liquid/solid interdiffusion with the X-alloy layer during the bonding according to the binary Ga-X-alloy phase diagram. The Ga component further diffused through the X-alloy layer and preferentially reacted with the Cu substrate to form thermodynamically stable CuGa2 intermetallic compound (IMC) at the Cu/X-alloy interface. The crosssectional scanning electron microscope (SEM) and focus ion beam (FIB) analyses indicated that the uniform IMC layer has around 2 μm in thickness. The energy dispersive X-ray spectroscopy (EDS) analysis showed that the electroplated Ga layer was completed consumed and mostly converted to interfacial IMC and partially dissolved in the X-alloy layer after the bonding. The microstructure characterization of the joint revealed an indistinct bonding interface with few impurities or defects, showing pronounced effect of interdiffusion during the bonding. The produced joint structure exhibited a bonding strength greater than 5 MPa as measured by a chip-scale universal testing machine. The low-temperature liquid/solid interdiffusion bonding process could be operated without the need of chemical mechanical polish (CMP). It is believed, basing on the bonding performance, that the Ga assisted low-temperature Cu-to-Cu bonding approach could be more feasible for new applications in fine-pitch 3D IC packaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient Thermal Modeling of Die Bond Process in Multiple Die Stacked Flash Memory Package Development and Application of the Moisture-Dependent Viscoelastic Model of Polyimide in Hygro-Thermo-Mechanical Analysis of Fan-Out Interconnect Superb sinterability of the Cu paste consisting of bimodal size distribution Cu nanoparticles for low-temperature and pressureless sintering of large-area die attachment and the sintering mechanism Demonstration of Substrate Embedded Ni-Zn Ferrite Core Solenoid Inductors Using a Photosensitive Glass Substrate A De-Embedding and Embedding Procedure for High-Speed Channel Eye Diagram Oscilloscope Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1