Philipp Braun, Michaela Grafelmann, Felix Gill, Hauke Stolz, Johannes Hinckeldeyn, Ann-Kathrin Lange
{"title":"虚拟现实沉浸式多用户消防员训练场景","authors":"Philipp Braun, Michaela Grafelmann, Felix Gill, Hauke Stolz, Johannes Hinckeldeyn, Ann-Kathrin Lange","doi":"10.1016/j.vrih.2022.08.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Virtual reality (VR) applications can be used to provide comprehensive training scenarios that are difficult or impossible to represent in physical configurations. This includes team training for emergency services such as firefighting. Creating a high level of immersion is essential for achieving effective virtual training. In this respect, motion-capture systems offer the possibility of creating highly immersive multi-user training experiences, including full-body avatars.</p></div><div><h3>Methods</h3><p>This study presents a preliminary prototype that helps extinguish a virtual fire on a container ship as a VR training scenario. The prototype provides a full-body and multi-user VR experience based on the synthesis of position data provided by the motion-capture system and orientation data from the VR headsets. Moreover, the prototype facilitates an initial evaluation of the results.</p></div><div><h3>Results</h3><p>The results confirm the value of using VR for training procedures that are difficult to implement in the real world. Furthermore, the results show that motion-capture-based VR technologies are particularly useful for firefighting training, in which participants can collaborate in difficult-to-access environments. However, this study also indicates that increasing the immersion in such training remains a challenge.</p></div><div><h3>Conclusions</h3><p>This study presents a prototypical VR application that enables the multi-user training of maritime firefighters. Future research should evaluate the initial results, provide more extensive training scenarios, and measure the training progress.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"4 5","pages":"Pages 406-417"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209657962200081X/pdf?md5=1287c6b99ffe058108e336cc8bf7aca8&pid=1-s2.0-S209657962200081X-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Virtual reality for immersive multi-user firefighter-training scenarios\",\"authors\":\"Philipp Braun, Michaela Grafelmann, Felix Gill, Hauke Stolz, Johannes Hinckeldeyn, Ann-Kathrin Lange\",\"doi\":\"10.1016/j.vrih.2022.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Virtual reality (VR) applications can be used to provide comprehensive training scenarios that are difficult or impossible to represent in physical configurations. This includes team training for emergency services such as firefighting. Creating a high level of immersion is essential for achieving effective virtual training. In this respect, motion-capture systems offer the possibility of creating highly immersive multi-user training experiences, including full-body avatars.</p></div><div><h3>Methods</h3><p>This study presents a preliminary prototype that helps extinguish a virtual fire on a container ship as a VR training scenario. The prototype provides a full-body and multi-user VR experience based on the synthesis of position data provided by the motion-capture system and orientation data from the VR headsets. Moreover, the prototype facilitates an initial evaluation of the results.</p></div><div><h3>Results</h3><p>The results confirm the value of using VR for training procedures that are difficult to implement in the real world. Furthermore, the results show that motion-capture-based VR technologies are particularly useful for firefighting training, in which participants can collaborate in difficult-to-access environments. However, this study also indicates that increasing the immersion in such training remains a challenge.</p></div><div><h3>Conclusions</h3><p>This study presents a prototypical VR application that enables the multi-user training of maritime firefighters. Future research should evaluate the initial results, provide more extensive training scenarios, and measure the training progress.</p></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"4 5\",\"pages\":\"Pages 406-417\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209657962200081X/pdf?md5=1287c6b99ffe058108e336cc8bf7aca8&pid=1-s2.0-S209657962200081X-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209657962200081X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209657962200081X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Virtual reality for immersive multi-user firefighter-training scenarios
Background
Virtual reality (VR) applications can be used to provide comprehensive training scenarios that are difficult or impossible to represent in physical configurations. This includes team training for emergency services such as firefighting. Creating a high level of immersion is essential for achieving effective virtual training. In this respect, motion-capture systems offer the possibility of creating highly immersive multi-user training experiences, including full-body avatars.
Methods
This study presents a preliminary prototype that helps extinguish a virtual fire on a container ship as a VR training scenario. The prototype provides a full-body and multi-user VR experience based on the synthesis of position data provided by the motion-capture system and orientation data from the VR headsets. Moreover, the prototype facilitates an initial evaluation of the results.
Results
The results confirm the value of using VR for training procedures that are difficult to implement in the real world. Furthermore, the results show that motion-capture-based VR technologies are particularly useful for firefighting training, in which participants can collaborate in difficult-to-access environments. However, this study also indicates that increasing the immersion in such training remains a challenge.
Conclusions
This study presents a prototypical VR application that enables the multi-user training of maritime firefighters. Future research should evaluate the initial results, provide more extensive training scenarios, and measure the training progress.