Nattapong Kitsuwan , Praphan Pavarangkoon , Avishek Nag
{"title":"弹性光网络与频谱切片的碎片带宽分配","authors":"Nattapong Kitsuwan , Praphan Pavarangkoon , Avishek Nag","doi":"10.1016/j.osn.2020.100583","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Elastic Optical Networks (EONs) allow the channel spacing and the </span>spectral width<span><span> of an optical signal to be dynamically adjusted and hence have become an important paradigm in managing the heterogeneous bandwidth demands of optical backbone networks<span>. The entire available optical spectrum is divided into some spectrum slots which define the smallest </span></span>granularity<span> of bandwidth and optical signals with variable bandwidths can occupy different number of such slots. The constraints imposed by the physical layer of an EON require that the slots occupied by an optical signal from source to destination have to be consecutive and contiguous in terms of their relative position in the optical spectrum. Furthermore, the same spectrum slots need to be reserved throughout the entire optical signal's path from its source to destination. The above constraints make the routing and spectrum allocation (RSA) in EONs very challenging because unavailability of enough spectrum slots that together equals the spectral width of the optical signal associated with an end-to-end request, will result in blocking of the request. Recent developments in the physical layer technologies have made all-optical ‘slicing’ of a request possible and make the request to be ‘fit’ into multiple non-consecutive spectral slots in an EON. But these all-optical ‘slicers’ employ complex technologies and can be very costly to employ. In this paper, we propose a spectrum allocation scheme for an EON node architecture with these ‘slicers’ and we also formulate a modified RSA scheme for EONs employing slicers, both as a mixed-integer linear programming (MILP) model and a </span></span></span>heuristic algorithm. Our main aim is to analyze the tradeoff between the number of slicers that can be used per node versus the spectrum utilization and bandwidth blocking rate. The numerical results show that the proposed scheme with slicers can significantly improve bandwidth blocking rate, compared to the conventional scheme without slicer.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"38 ","pages":"Article 100583"},"PeriodicalIF":1.9000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2020.100583","citationCount":"16","resultStr":"{\"title\":\"Elastic optical network with spectrum slicing for fragmented bandwidth allocation\",\"authors\":\"Nattapong Kitsuwan , Praphan Pavarangkoon , Avishek Nag\",\"doi\":\"10.1016/j.osn.2020.100583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Elastic Optical Networks (EONs) allow the channel spacing and the </span>spectral width<span><span> of an optical signal to be dynamically adjusted and hence have become an important paradigm in managing the heterogeneous bandwidth demands of optical backbone networks<span>. The entire available optical spectrum is divided into some spectrum slots which define the smallest </span></span>granularity<span> of bandwidth and optical signals with variable bandwidths can occupy different number of such slots. The constraints imposed by the physical layer of an EON require that the slots occupied by an optical signal from source to destination have to be consecutive and contiguous in terms of their relative position in the optical spectrum. Furthermore, the same spectrum slots need to be reserved throughout the entire optical signal's path from its source to destination. The above constraints make the routing and spectrum allocation (RSA) in EONs very challenging because unavailability of enough spectrum slots that together equals the spectral width of the optical signal associated with an end-to-end request, will result in blocking of the request. Recent developments in the physical layer technologies have made all-optical ‘slicing’ of a request possible and make the request to be ‘fit’ into multiple non-consecutive spectral slots in an EON. But these all-optical ‘slicers’ employ complex technologies and can be very costly to employ. In this paper, we propose a spectrum allocation scheme for an EON node architecture with these ‘slicers’ and we also formulate a modified RSA scheme for EONs employing slicers, both as a mixed-integer linear programming (MILP) model and a </span></span></span>heuristic algorithm. Our main aim is to analyze the tradeoff between the number of slicers that can be used per node versus the spectrum utilization and bandwidth blocking rate. The numerical results show that the proposed scheme with slicers can significantly improve bandwidth blocking rate, compared to the conventional scheme without slicer.</p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"38 \",\"pages\":\"Article 100583\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.osn.2020.100583\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427720300369\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427720300369","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Elastic optical network with spectrum slicing for fragmented bandwidth allocation
Elastic Optical Networks (EONs) allow the channel spacing and the spectral width of an optical signal to be dynamically adjusted and hence have become an important paradigm in managing the heterogeneous bandwidth demands of optical backbone networks. The entire available optical spectrum is divided into some spectrum slots which define the smallest granularity of bandwidth and optical signals with variable bandwidths can occupy different number of such slots. The constraints imposed by the physical layer of an EON require that the slots occupied by an optical signal from source to destination have to be consecutive and contiguous in terms of their relative position in the optical spectrum. Furthermore, the same spectrum slots need to be reserved throughout the entire optical signal's path from its source to destination. The above constraints make the routing and spectrum allocation (RSA) in EONs very challenging because unavailability of enough spectrum slots that together equals the spectral width of the optical signal associated with an end-to-end request, will result in blocking of the request. Recent developments in the physical layer technologies have made all-optical ‘slicing’ of a request possible and make the request to be ‘fit’ into multiple non-consecutive spectral slots in an EON. But these all-optical ‘slicers’ employ complex technologies and can be very costly to employ. In this paper, we propose a spectrum allocation scheme for an EON node architecture with these ‘slicers’ and we also formulate a modified RSA scheme for EONs employing slicers, both as a mixed-integer linear programming (MILP) model and a heuristic algorithm. Our main aim is to analyze the tradeoff between the number of slicers that can be used per node versus the spectrum utilization and bandwidth blocking rate. The numerical results show that the proposed scheme with slicers can significantly improve bandwidth blocking rate, compared to the conventional scheme without slicer.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks