环氧成型化合物的机械相关化学收缩

M. F. Sousa, O. Holck, T. Braun, J. Bauer, H. Walter, O. Wittler, K. Lang
{"title":"环氧成型化合物的机械相关化学收缩","authors":"M. F. Sousa, O. Holck, T. Braun, J. Bauer, H. Walter, O. Wittler, K. Lang","doi":"10.1109/EUROSIME.2013.6529962","DOIUrl":null,"url":null,"abstract":"One of the most prominent failure modes in microelectronics devices is the delamination of epoxy materials (adhesives, molding compounds). The thermal mismatch at the interface between materials leads to stresses that build up during processing steps at different temperatures and in the following thermal cycling through use of the device or reliability testing. These stresses are well understood and are commonly investigated by finite element modeling. Epoxy molding compounds undergo a chemical reaction during processing called curing. Here the two components epoxy and hardener react to form a 3D network giving the molding compound its final material properties. During this process, the volume of the compound decreases, a phenomenon called cure shrinkage. The shrinkage itself can be experimentally determined, e.g. using volumetric measurements. However, due to relaxation processes that take place at higher temperatures and the changing thermal-mechanical properties during the curing process, the stresses that build up due to chemical shrinkage are more complex to consider. In this work, the mechanically relevant cure shrinkage was investigated by a combination of experiments and finite clement simulations. Samples of molding compound on Cu-leadframe material were manufactured using standard procedures. Thermal expansion experiments were performed at several temperatures recording the warpage of the samples. To extract the mechanically relevant shrinkage FE-simulations were performed mimicking the process temperatures. The resulting data was evaluated and discussed with respect to: qualitative behaviour for five different molding compounds; qualitative agreement between simulation and experiment; error margins of simulation results with respect to material properties input data; and error margins of experimental data due to processing variations and experimental setup.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mechanically relevant chemical shrinkage of epoxy molding compounds\",\"authors\":\"M. F. Sousa, O. Holck, T. Braun, J. Bauer, H. Walter, O. Wittler, K. Lang\",\"doi\":\"10.1109/EUROSIME.2013.6529962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most prominent failure modes in microelectronics devices is the delamination of epoxy materials (adhesives, molding compounds). The thermal mismatch at the interface between materials leads to stresses that build up during processing steps at different temperatures and in the following thermal cycling through use of the device or reliability testing. These stresses are well understood and are commonly investigated by finite element modeling. Epoxy molding compounds undergo a chemical reaction during processing called curing. Here the two components epoxy and hardener react to form a 3D network giving the molding compound its final material properties. During this process, the volume of the compound decreases, a phenomenon called cure shrinkage. The shrinkage itself can be experimentally determined, e.g. using volumetric measurements. However, due to relaxation processes that take place at higher temperatures and the changing thermal-mechanical properties during the curing process, the stresses that build up due to chemical shrinkage are more complex to consider. In this work, the mechanically relevant cure shrinkage was investigated by a combination of experiments and finite clement simulations. Samples of molding compound on Cu-leadframe material were manufactured using standard procedures. Thermal expansion experiments were performed at several temperatures recording the warpage of the samples. To extract the mechanically relevant shrinkage FE-simulations were performed mimicking the process temperatures. The resulting data was evaluated and discussed with respect to: qualitative behaviour for five different molding compounds; qualitative agreement between simulation and experiment; error margins of simulation results with respect to material properties input data; and error margins of experimental data due to processing variations and experimental setup.\",\"PeriodicalId\":270532,\"journal\":{\"name\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2013.6529962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

微电子器件中最突出的失效模式之一是环氧材料(粘合剂、模塑化合物)的分层。材料界面处的热不匹配导致在不同温度下的加工步骤以及通过使用设备或可靠性测试的后续热循环中积累应力。这些应力是很容易理解的,通常通过有限元建模来研究。环氧成型化合物在加工过程中会发生一种叫做固化的化学反应。在这里,两种组分环氧树脂和硬化剂反应形成一个3D网络,使成型化合物具有最终的材料性能。在此过程中,化合物的体积减小,这种现象称为固化收缩。收缩本身可以通过实验来确定,例如使用体积测量。然而,由于在较高温度下发生的松弛过程以及固化过程中热机械性能的变化,由于化学收缩而产生的应力更加复杂。在这项工作中,通过实验和有限元模拟相结合的方法研究了机械相关的固化收缩。采用标准程序制备了铜引线框架材料上的模塑化合物样品。在不同温度下进行了热膨胀实验,记录了样品的翘曲。为了提取机械相关的收缩率,进行了模拟工艺温度的fe模拟。对所得数据进行了评估和讨论,涉及:五种不同成型化合物的定性行为;模拟与实验的定性吻合;模拟结果相对于材料属性输入数据的误差范围;由于处理变化和实验设置,实验数据的误差范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanically relevant chemical shrinkage of epoxy molding compounds
One of the most prominent failure modes in microelectronics devices is the delamination of epoxy materials (adhesives, molding compounds). The thermal mismatch at the interface between materials leads to stresses that build up during processing steps at different temperatures and in the following thermal cycling through use of the device or reliability testing. These stresses are well understood and are commonly investigated by finite element modeling. Epoxy molding compounds undergo a chemical reaction during processing called curing. Here the two components epoxy and hardener react to form a 3D network giving the molding compound its final material properties. During this process, the volume of the compound decreases, a phenomenon called cure shrinkage. The shrinkage itself can be experimentally determined, e.g. using volumetric measurements. However, due to relaxation processes that take place at higher temperatures and the changing thermal-mechanical properties during the curing process, the stresses that build up due to chemical shrinkage are more complex to consider. In this work, the mechanically relevant cure shrinkage was investigated by a combination of experiments and finite clement simulations. Samples of molding compound on Cu-leadframe material were manufactured using standard procedures. Thermal expansion experiments were performed at several temperatures recording the warpage of the samples. To extract the mechanically relevant shrinkage FE-simulations were performed mimicking the process temperatures. The resulting data was evaluated and discussed with respect to: qualitative behaviour for five different molding compounds; qualitative agreement between simulation and experiment; error margins of simulation results with respect to material properties input data; and error margins of experimental data due to processing variations and experimental setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of mixed-mode delamination by cohesive zone method Resistance electric filed dependence simulation of piezoresistive silicon pressure sensor and improvement by shield layer Reliability investigation of system in package devices toward aeronautic requirements: Methodology and application Adhesion of printed circuit boards with bending and the effect of reflow cycles Bonding wire life prediction model of the power module under power cycling test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1