G. P. Gibiino, R. Cignani, A. Santarelli, F. Filicori
{"title":"基于电荷捕获和自加热的GaN HEMT阻性电流全局建模,用于多偏置多类PA性能预测","authors":"G. P. Gibiino, R. Cignani, A. Santarelli, F. Filicori","doi":"10.23919/EUMIC.2017.8230695","DOIUrl":null,"url":null,"abstract":"An empirical Gallium Nitride (GaN) HEMT model, suitable for multi-bias and multi-class power amplifier (PA) performance prediction, is formulated. In addition to the fast dynamically-nonlinear capture mechanisms normally considered for local modeling, dynamically-linear charge trapping is taken into account here. A straightforward empirical identification procedure based on tailored double-pulsed IV measurements is described. Validation experiments carried out on a 8×125 pm (gate length: 0.25 pm) GaN-on-SiC HEMT show good model prediction capabilities under different drain bias conditions and class AB, B, and C large-signal PA operation at both low-frequency (f = 4 MHz) and RF (f = 2.5 GHz).","PeriodicalId":120932,"journal":{"name":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global modeling of GaN HEMT resistive current including charge trapping and self-heating for multi-bias multi-class PA performance prediction\",\"authors\":\"G. P. Gibiino, R. Cignani, A. Santarelli, F. Filicori\",\"doi\":\"10.23919/EUMIC.2017.8230695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An empirical Gallium Nitride (GaN) HEMT model, suitable for multi-bias and multi-class power amplifier (PA) performance prediction, is formulated. In addition to the fast dynamically-nonlinear capture mechanisms normally considered for local modeling, dynamically-linear charge trapping is taken into account here. A straightforward empirical identification procedure based on tailored double-pulsed IV measurements is described. Validation experiments carried out on a 8×125 pm (gate length: 0.25 pm) GaN-on-SiC HEMT show good model prediction capabilities under different drain bias conditions and class AB, B, and C large-signal PA operation at both low-frequency (f = 4 MHz) and RF (f = 2.5 GHz).\",\"PeriodicalId\":120932,\"journal\":{\"name\":\"2017 12th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMIC.2017.8230695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2017.8230695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global modeling of GaN HEMT resistive current including charge trapping and self-heating for multi-bias multi-class PA performance prediction
An empirical Gallium Nitride (GaN) HEMT model, suitable for multi-bias and multi-class power amplifier (PA) performance prediction, is formulated. In addition to the fast dynamically-nonlinear capture mechanisms normally considered for local modeling, dynamically-linear charge trapping is taken into account here. A straightforward empirical identification procedure based on tailored double-pulsed IV measurements is described. Validation experiments carried out on a 8×125 pm (gate length: 0.25 pm) GaN-on-SiC HEMT show good model prediction capabilities under different drain bias conditions and class AB, B, and C large-signal PA operation at both low-frequency (f = 4 MHz) and RF (f = 2.5 GHz).