基于OpenCV的计算机视觉火灾探测系统-一个案例研究

Aman Kumar, Flavia D Gonsalves
{"title":"基于OpenCV的计算机视觉火灾探测系统-一个案例研究","authors":"Aman Kumar, Flavia D Gonsalves","doi":"10.46610/rrmlcc.2022.v01i02.005","DOIUrl":null,"url":null,"abstract":"Conventional fire detection system was based mechanical sensor for fire detection. The smoke particles in the surrounding detected by sensors in the traditional fire detection system. However, this can also lead to false alarms. For example, a person smoking in a room of can activate a general fire alarm system. In addition, these systems are expensive and ineffective if the fire is far away from the detector. An alternatives fire detection system such as system based on computer vision and Image/video Processing technology to manage false alarms from conventional fire detection. One of the most cost-effective ways is to use surveillance cameras to detect fires and alert affected parties. In the following proposed system proposes a technique which will be monitor the outburst of a fire anywhere within the camera range using a surveillance camera. In this Paper, fire alarm system will be developed to efficiently detect fires and protect lives and property from fire hazards. This research describes a fire detection system that uses color and motion models derived from video sequences. The proposed approach identifies color changes and mobility in common areas to identify fires and can therefore be used both in real time and in datasets.","PeriodicalId":149011,"journal":{"name":"Research & Review: Machine Learning and Cloud Computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer Vision Based Fire Detection System Using OpenCV - A Case Study\",\"authors\":\"Aman Kumar, Flavia D Gonsalves\",\"doi\":\"10.46610/rrmlcc.2022.v01i02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional fire detection system was based mechanical sensor for fire detection. The smoke particles in the surrounding detected by sensors in the traditional fire detection system. However, this can also lead to false alarms. For example, a person smoking in a room of can activate a general fire alarm system. In addition, these systems are expensive and ineffective if the fire is far away from the detector. An alternatives fire detection system such as system based on computer vision and Image/video Processing technology to manage false alarms from conventional fire detection. One of the most cost-effective ways is to use surveillance cameras to detect fires and alert affected parties. In the following proposed system proposes a technique which will be monitor the outburst of a fire anywhere within the camera range using a surveillance camera. In this Paper, fire alarm system will be developed to efficiently detect fires and protect lives and property from fire hazards. This research describes a fire detection system that uses color and motion models derived from video sequences. The proposed approach identifies color changes and mobility in common areas to identify fires and can therefore be used both in real time and in datasets.\",\"PeriodicalId\":149011,\"journal\":{\"name\":\"Research & Review: Machine Learning and Cloud Computing\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research & Review: Machine Learning and Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46610/rrmlcc.2022.v01i02.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research & Review: Machine Learning and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46610/rrmlcc.2022.v01i02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的火灾探测系统是基于机械传感器进行火灾探测的。在传统的火灾探测系统中,通过传感器探测到周围的烟雾颗粒。然而,这也可能导致误报。例如,一个人在房间里吸烟可以激活一般的火灾报警系统。此外,如果火灾远离探测器,这些系统既昂贵又无效。一种可替代的火灾探测系统,如基于计算机视觉和图像/视频处理技术的系统,以管理传统火灾探测中的假警报。最具成本效益的方法之一是使用监控摄像头探测火灾并向受影响的各方发出警报。在以下提出的系统中,提出了一种技术,该技术将使用监控摄像机监控摄像机范围内任何地方的火灾爆发。本文将开发火灾报警系统,以有效地探测火灾,保护生命财产免受火灾危害。本研究描述了一种火灾探测系统,该系统使用来自视频序列的颜色和运动模型。所提出的方法通过识别公共区域的颜色变化和流动性来识别火灾,因此可以在实时和数据集中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer Vision Based Fire Detection System Using OpenCV - A Case Study
Conventional fire detection system was based mechanical sensor for fire detection. The smoke particles in the surrounding detected by sensors in the traditional fire detection system. However, this can also lead to false alarms. For example, a person smoking in a room of can activate a general fire alarm system. In addition, these systems are expensive and ineffective if the fire is far away from the detector. An alternatives fire detection system such as system based on computer vision and Image/video Processing technology to manage false alarms from conventional fire detection. One of the most cost-effective ways is to use surveillance cameras to detect fires and alert affected parties. In the following proposed system proposes a technique which will be monitor the outburst of a fire anywhere within the camera range using a surveillance camera. In this Paper, fire alarm system will be developed to efficiently detect fires and protect lives and property from fire hazards. This research describes a fire detection system that uses color and motion models derived from video sequences. The proposed approach identifies color changes and mobility in common areas to identify fires and can therefore be used both in real time and in datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breathing Easy: A Python Dive into Air Quality Analysis Leveraging AI and ML in Rapid Saliva Drug Testing for Efficient Identification of Drug Users Human-Computer Interaction Techniques for Explainable Artificial Intelligence Systems Facial Emotion Song Recommender System Enhancing Market Basket Analysis Through the Interplay of Advertisement and Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1