Chi-Hsuan Lin, Wei-ting Chen, Y. Ke, Jenn-Ming Song, K. Yasuda
{"title":"铜表面初始氧化层的电化学分析","authors":"Chi-Hsuan Lin, Wei-ting Chen, Y. Ke, Jenn-Ming Song, K. Yasuda","doi":"10.23919/ICEP55381.2022.9795651","DOIUrl":null,"url":null,"abstract":"In this study, coulometric reduction method was adopted to investigate the phase and thickness of surface oxide layer of sputtered copper. The samples subjected to citric acid wash and room temperature storage were investigated. Repeated reduction tests in NaOH solution was also carried out to explore the very early state of the copper surface. According to the reduction potential ranging from -0.62 to 0.65 V, the initial oxide formed in NaOH solution was CuO with the thickness of around 1.1~1.2 nm.","PeriodicalId":413776,"journal":{"name":"2022 International Conference on Electronics Packaging (ICEP)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical analysis of initial oxide layers on copper surface\",\"authors\":\"Chi-Hsuan Lin, Wei-ting Chen, Y. Ke, Jenn-Ming Song, K. Yasuda\",\"doi\":\"10.23919/ICEP55381.2022.9795651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, coulometric reduction method was adopted to investigate the phase and thickness of surface oxide layer of sputtered copper. The samples subjected to citric acid wash and room temperature storage were investigated. Repeated reduction tests in NaOH solution was also carried out to explore the very early state of the copper surface. According to the reduction potential ranging from -0.62 to 0.65 V, the initial oxide formed in NaOH solution was CuO with the thickness of around 1.1~1.2 nm.\",\"PeriodicalId\":413776,\"journal\":{\"name\":\"2022 International Conference on Electronics Packaging (ICEP)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electronics Packaging (ICEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICEP55381.2022.9795651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP55381.2022.9795651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrochemical analysis of initial oxide layers on copper surface
In this study, coulometric reduction method was adopted to investigate the phase and thickness of surface oxide layer of sputtered copper. The samples subjected to citric acid wash and room temperature storage were investigated. Repeated reduction tests in NaOH solution was also carried out to explore the very early state of the copper surface. According to the reduction potential ranging from -0.62 to 0.65 V, the initial oxide formed in NaOH solution was CuO with the thickness of around 1.1~1.2 nm.