一种用于交通模拟的GIS数据逼真道路生成方法

Yacine Amara, Abdenour Amamra, Yasmine Daheur, Lamia Saichi
{"title":"一种用于交通模拟的GIS数据逼真道路生成方法","authors":"Yacine Amara, Abdenour Amamra, Yasmine Daheur, Lamia Saichi","doi":"10.15439/2019F223","DOIUrl":null,"url":null,"abstract":"Road networks exist in the form of polylines with attributes within the GIS databases. Such a representation renders the geographic data impracticable for 3D road traffic simulation. In this work, we propose a method to transform raw GIS data into a realistic, operational model for real-time road traffic simulation. For instance, the proposed raw to simulation ready data transformation is achieved through several curvature estimation, interpolation/approximation, and clustering schemes. The obtained results show the performance of our approach and prove its adequacy to real traffic simulation scenario as can be seen in this video1.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A GIS Data Realistic Road Generation Approach for Traffic Simulation\",\"authors\":\"Yacine Amara, Abdenour Amamra, Yasmine Daheur, Lamia Saichi\",\"doi\":\"10.15439/2019F223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road networks exist in the form of polylines with attributes within the GIS databases. Such a representation renders the geographic data impracticable for 3D road traffic simulation. In this work, we propose a method to transform raw GIS data into a realistic, operational model for real-time road traffic simulation. For instance, the proposed raw to simulation ready data transformation is achieved through several curvature estimation, interpolation/approximation, and clustering schemes. The obtained results show the performance of our approach and prove its adequacy to real traffic simulation scenario as can be seen in this video1.\",\"PeriodicalId\":168208,\"journal\":{\"name\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2019F223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

道路网以折线的形式存在,具有GIS数据库中的属性。这种表示方式使得地理数据无法用于三维道路交通模拟。在这项工作中,我们提出了一种将原始GIS数据转换为实时道路交通模拟的现实操作模型的方法。例如,通过几种曲率估计、插值/近似和聚类方案实现了原始数据到仿真就绪数据的转换。所获得的结果表明了我们的方法的性能,并证明了其对真实交通模拟场景的充分性,可以从这个视频中看到1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A GIS Data Realistic Road Generation Approach for Traffic Simulation
Road networks exist in the form of polylines with attributes within the GIS databases. Such a representation renders the geographic data impracticable for 3D road traffic simulation. In this work, we propose a method to transform raw GIS data into a realistic, operational model for real-time road traffic simulation. For instance, the proposed raw to simulation ready data transformation is achieved through several curvature estimation, interpolation/approximation, and clustering schemes. The obtained results show the performance of our approach and prove its adequacy to real traffic simulation scenario as can be seen in this video1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Support Vector Regression with Reduced Training Data A Deep Learning and Multimodal Ambient Sensing Framework for Human Activity Recognition Predicting Blood Glucose using an LSTM Neural Network License Plate Detection with Machine Learning Without Using Number Recognition Tool-assisted Surrogate Selection for Simulation Models in Energy Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1