Eunseok Song, Kyoungchoul Koo, Myunghoi Kim, J. Pak, Joungho Kim
{"title":"基于tsv的3d - ic中的去耦电容堆叠芯片(DCSC)","authors":"Eunseok Song, Kyoungchoul Koo, Myunghoi Kim, J. Pak, Joungho Kim","doi":"10.1109/EPEPS.2011.6100235","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new decoupling capacitor stacked chip (DCSC) with discrete capacitors and through-silicon-vias (TSVs) that can overcome the limitations of the conventional decoupling capacitor solutions such as expensive on-chip NMOS capacitor and package-level discrete decoupling capacitor with narrow-band. The key idea of the proposed TSV-based DCSC is mounting the decoupling capacitors such as silicon-based NMOS capacitor and discrete capacitor on the backside of a chip and connecting the capacitors to the on-chip PDN through TSVs. Therefore, the TSV-based DCSC provides the lowest parasitic inductance (ESL: under several tens pH) through a short interconnections between the on-chip PDN and decoupling capacitors as well as the largest capacitance (up to several uF) by stacking the additional decoupling capacitors to 3D-IC systems.","PeriodicalId":313560,"journal":{"name":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoupling capacitor stacked chip (DCSC) in TSV-based 3D-ICs\",\"authors\":\"Eunseok Song, Kyoungchoul Koo, Myunghoi Kim, J. Pak, Joungho Kim\",\"doi\":\"10.1109/EPEPS.2011.6100235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new decoupling capacitor stacked chip (DCSC) with discrete capacitors and through-silicon-vias (TSVs) that can overcome the limitations of the conventional decoupling capacitor solutions such as expensive on-chip NMOS capacitor and package-level discrete decoupling capacitor with narrow-band. The key idea of the proposed TSV-based DCSC is mounting the decoupling capacitors such as silicon-based NMOS capacitor and discrete capacitor on the backside of a chip and connecting the capacitors to the on-chip PDN through TSVs. Therefore, the TSV-based DCSC provides the lowest parasitic inductance (ESL: under several tens pH) through a short interconnections between the on-chip PDN and decoupling capacitors as well as the largest capacitance (up to several uF) by stacking the additional decoupling capacitors to 3D-IC systems.\",\"PeriodicalId\":313560,\"journal\":{\"name\":\"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2011.6100235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2011.6100235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decoupling capacitor stacked chip (DCSC) in TSV-based 3D-ICs
In this paper, we introduce a new decoupling capacitor stacked chip (DCSC) with discrete capacitors and through-silicon-vias (TSVs) that can overcome the limitations of the conventional decoupling capacitor solutions such as expensive on-chip NMOS capacitor and package-level discrete decoupling capacitor with narrow-band. The key idea of the proposed TSV-based DCSC is mounting the decoupling capacitors such as silicon-based NMOS capacitor and discrete capacitor on the backside of a chip and connecting the capacitors to the on-chip PDN through TSVs. Therefore, the TSV-based DCSC provides the lowest parasitic inductance (ESL: under several tens pH) through a short interconnections between the on-chip PDN and decoupling capacitors as well as the largest capacitance (up to several uF) by stacking the additional decoupling capacitors to 3D-IC systems.