H. Hara, Yasuhiro Sugimoto, M. Noda, T. Nagamatsu, Y. Watanabe, Hiroshi Iwai, Y. Niitsu, G. Sasaki, K. Maeguchi
{"title":"具有共享双极电池结构的350 ps 50 K 0.8 μ m BiCMOS栅极阵列","authors":"H. Hara, Yasuhiro Sugimoto, M. Noda, T. Nagamatsu, Y. Watanabe, Hiroshi Iwai, Y. Niitsu, G. Sasaki, K. Maeguchi","doi":"10.1109/CICC.1989.56712","DOIUrl":null,"url":null,"abstract":"A BiCMOS gate array with gate delay of 350 ps has been realized by 0.8-μm BiCMOS technology. Minimum gate delay and cell area have been achieved with a shared bipolar cell structure. The gate delay is almost equivalent to that of a 0.5-μm pure CMOS gate array. The cell-area increase is to only 25% compared with a 0.8-μm pure CMOS cell. I/O cells can interface with CMOS, TTL (transistor-transistor logic), and ECL (emitter-coupled logic) chips at the same time with a single supply voltage of 5 V","PeriodicalId":165054,"journal":{"name":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A 350 ps 50 K 0.8 μm BiCMOS gate array with shared bipolar cell structure\",\"authors\":\"H. Hara, Yasuhiro Sugimoto, M. Noda, T. Nagamatsu, Y. Watanabe, Hiroshi Iwai, Y. Niitsu, G. Sasaki, K. Maeguchi\",\"doi\":\"10.1109/CICC.1989.56712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A BiCMOS gate array with gate delay of 350 ps has been realized by 0.8-μm BiCMOS technology. Minimum gate delay and cell area have been achieved with a shared bipolar cell structure. The gate delay is almost equivalent to that of a 0.5-μm pure CMOS gate array. The cell-area increase is to only 25% compared with a 0.8-μm pure CMOS cell. I/O cells can interface with CMOS, TTL (transistor-transistor logic), and ECL (emitter-coupled logic) chips at the same time with a single supply voltage of 5 V\",\"PeriodicalId\":165054,\"journal\":{\"name\":\"1989 Proceedings of the IEEE Custom Integrated Circuits Conference\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1989 Proceedings of the IEEE Custom Integrated Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.1989.56712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.1989.56712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 350 ps 50 K 0.8 μm BiCMOS gate array with shared bipolar cell structure
A BiCMOS gate array with gate delay of 350 ps has been realized by 0.8-μm BiCMOS technology. Minimum gate delay and cell area have been achieved with a shared bipolar cell structure. The gate delay is almost equivalent to that of a 0.5-μm pure CMOS gate array. The cell-area increase is to only 25% compared with a 0.8-μm pure CMOS cell. I/O cells can interface with CMOS, TTL (transistor-transistor logic), and ECL (emitter-coupled logic) chips at the same time with a single supply voltage of 5 V