微机械环形谐振器与一个二维声子晶体支持机械稳健性和提供掩膜偏差公差

B. Figeys, B. Nauwelaers, H. Tilmans, X. Rottenberg
{"title":"微机械环形谐振器与一个二维声子晶体支持机械稳健性和提供掩膜偏差公差","authors":"B. Figeys, B. Nauwelaers, H. Tilmans, X. Rottenberg","doi":"10.1109/MEMSYS.2015.7051134","DOIUrl":null,"url":null,"abstract":"This paper reports on the design of ring-type electrostatically transduced bulk acoustic wave resonators designed for increased shock and vibration resistance. This was achieved through a 2D Phononic Crystal (PnC) support. The PnC is designed to operate in its bandgap so that it acts as a non-propagating medium, hereby achieving simultaneously a mechanically strong and acoustically well-confined support. We manufactured SiGe-resonators at 137.8MHz with a Q-factor of around 17,000. Another feature of this design is the process tolerance of the Q-factor (within 5%) and the resonance frequency towards mask misalignment (<;7μm) for the center support.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Micromechanical ring resonators with a 2D phononic crystal support for mechanical robustness and providing mask misalignment tolerance\",\"authors\":\"B. Figeys, B. Nauwelaers, H. Tilmans, X. Rottenberg\",\"doi\":\"10.1109/MEMSYS.2015.7051134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the design of ring-type electrostatically transduced bulk acoustic wave resonators designed for increased shock and vibration resistance. This was achieved through a 2D Phononic Crystal (PnC) support. The PnC is designed to operate in its bandgap so that it acts as a non-propagating medium, hereby achieving simultaneously a mechanically strong and acoustically well-confined support. We manufactured SiGe-resonators at 137.8MHz with a Q-factor of around 17,000. Another feature of this design is the process tolerance of the Q-factor (within 5%) and the resonance frequency towards mask misalignment (<;7μm) for the center support.\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2015.7051134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文报道了一种环形静电换能型体声波谐振器的设计,以提高其抗冲击和抗振动能力。这是通过二维声子晶体(PnC)支持实现的。PnC被设计为在其带隙中工作,因此它充当非传播介质,从而同时实现机械强度和声学限制良好的支撑。我们制造了137.8MHz的sige谐振器,其q因子约为17,000。本设计的另一个特点是中心支撑的q因子的工艺公差(在5%以内)和掩模不对中共振频率(< 7μm)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micromechanical ring resonators with a 2D phononic crystal support for mechanical robustness and providing mask misalignment tolerance
This paper reports on the design of ring-type electrostatically transduced bulk acoustic wave resonators designed for increased shock and vibration resistance. This was achieved through a 2D Phononic Crystal (PnC) support. The PnC is designed to operate in its bandgap so that it acts as a non-propagating medium, hereby achieving simultaneously a mechanically strong and acoustically well-confined support. We manufactured SiGe-resonators at 137.8MHz with a Q-factor of around 17,000. Another feature of this design is the process tolerance of the Q-factor (within 5%) and the resonance frequency towards mask misalignment (<;7μm) for the center support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically-balanced folded-beam suspensions Fusion of cantilever and diaphragm pressure sensors according to frequency characteristics A nanomachined tunable oscillator controlled by electrostatic and optical force A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks Room temperature synthesis of silicon dioxide thin films for MEMS and silicon surface texturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1