一种新的双相神经元编码器实现

Madhuvanthi Srivatsav R, B. Kailath
{"title":"一种新的双相神经元编码器实现","authors":"Madhuvanthi Srivatsav R, B. Kailath","doi":"10.1109/AIIoT52608.2021.9454233","DOIUrl":null,"url":null,"abstract":"In an effort to address the issue of low power and area constraints which are important pre-requisites to many applications in the field of signal processing, this work focuses on the implementation of a novel biphasic neuron architecture, that is proven to be energy efficient, and highly compact. The low power Adaptive exponential integrate and fire neuron (ADEx I&F), is implemented as a biphasic encoder in 180 nm CMOS Technology, and a SER of upto 60 dB and a figure of merit (FOM) of 0.26 pJ/conversion is achieved. The proposed biphasic encoder is found to exhibit similar performance characteristics with respect to the existing architectures while comprising of 52 % lesser number of transistors than the conventional biphasic neuron encoder models.","PeriodicalId":443405,"journal":{"name":"2021 IEEE World AI IoT Congress (AIIoT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Biphasic Neuron Encoder Implementation\",\"authors\":\"Madhuvanthi Srivatsav R, B. Kailath\",\"doi\":\"10.1109/AIIoT52608.2021.9454233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an effort to address the issue of low power and area constraints which are important pre-requisites to many applications in the field of signal processing, this work focuses on the implementation of a novel biphasic neuron architecture, that is proven to be energy efficient, and highly compact. The low power Adaptive exponential integrate and fire neuron (ADEx I&F), is implemented as a biphasic encoder in 180 nm CMOS Technology, and a SER of upto 60 dB and a figure of merit (FOM) of 0.26 pJ/conversion is achieved. The proposed biphasic encoder is found to exhibit similar performance characteristics with respect to the existing architectures while comprising of 52 % lesser number of transistors than the conventional biphasic neuron encoder models.\",\"PeriodicalId\":443405,\"journal\":{\"name\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIIoT52608.2021.9454233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIIoT52608.2021.9454233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决低功耗和面积限制的问题,这是信号处理领域许多应用的重要先决条件,这项工作的重点是实现一种新的双相神经元结构,该结构被证明是节能的,并且高度紧凑。采用180nm CMOS技术实现了低功耗自适应指数积分和火神经元(ADEx I&F)作为双相编码器,实现了高达60 dB的SER和0.26 pJ/转换的品质因数(FOM)。与现有架构相比,所提出的双相编码器显示出相似的性能特征,同时包含的晶体管数量比传统的双相神经元编码器模型少52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Biphasic Neuron Encoder Implementation
In an effort to address the issue of low power and area constraints which are important pre-requisites to many applications in the field of signal processing, this work focuses on the implementation of a novel biphasic neuron architecture, that is proven to be energy efficient, and highly compact. The low power Adaptive exponential integrate and fire neuron (ADEx I&F), is implemented as a biphasic encoder in 180 nm CMOS Technology, and a SER of upto 60 dB and a figure of merit (FOM) of 0.26 pJ/conversion is achieved. The proposed biphasic encoder is found to exhibit similar performance characteristics with respect to the existing architectures while comprising of 52 % lesser number of transistors than the conventional biphasic neuron encoder models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CR-LPWAN: issues, solutions and research directions Automatic Detection of Vehicle Congestion by Using Roadside Unit Improved Noise Filtering Technique For Wake Detection In SAR Image Under Rough Sea Condition First Enriched Legal Database in Bangladesh with Efficient Search Optimization and Data Visualization for Law Students and Lawyers Differentially-Private Federated Learning with Long-Term Budget Constraints Using Online Lagrangian Descent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1