基于神经元机器结构的反向传播学习算法的计算

J. B. Ahn
{"title":"基于神经元机器结构的反向传播学习算法的计算","authors":"J. B. Ahn","doi":"10.1109/CIMSIM.2013.13","DOIUrl":null,"url":null,"abstract":"The neuron machine (NM) is a hardwarearchitecture that can be used to design efficient neural networksimulation systems. However, owing to its intrinsicunidirectional nature, NM architecture does not supportbackpropagation (BP) learning algorithms. This paperproposes novel schemes for NM architecture to support BPalgorithms. Reverse-mapping memories, synapse placementalgorithm, and a memory structure called triple rotatememory can be used to share synaptic weights in both the feedforwardand error BP stages without degrading thecomputational performance. An NM system supporting a BPtraining algorithm was implemented on a field-programmablegate array board and successfully trained a neural networkthat can classify MNIST handwritten digits. The implementedsystem showed a better performance over most chip-level orboard-level systems based on other hardware architectures.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Computation of Backpropagation Learning Algorithm Using Neuron Machine Architecture\",\"authors\":\"J. B. Ahn\",\"doi\":\"10.1109/CIMSIM.2013.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neuron machine (NM) is a hardwarearchitecture that can be used to design efficient neural networksimulation systems. However, owing to its intrinsicunidirectional nature, NM architecture does not supportbackpropagation (BP) learning algorithms. This paperproposes novel schemes for NM architecture to support BPalgorithms. Reverse-mapping memories, synapse placementalgorithm, and a memory structure called triple rotatememory can be used to share synaptic weights in both the feedforwardand error BP stages without degrading thecomputational performance. An NM system supporting a BPtraining algorithm was implemented on a field-programmablegate array board and successfully trained a neural networkthat can classify MNIST handwritten digits. The implementedsystem showed a better performance over most chip-level orboard-level systems based on other hardware architectures.\",\"PeriodicalId\":249355,\"journal\":{\"name\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSIM.2013.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

神经元机(neural machine, NM)是一种用于设计高效神经网络仿真系统的硬件架构。然而,由于其固有的单向性,NM架构不支持反向传播(BP)学习算法。本文提出了一种新的NM架构方案来支持bpalgga算法。反向映射记忆、突触放置算法和一种称为三重旋转记忆的记忆结构可用于在前馈和误差BP阶段共享突触权重,而不会降低计算性能。在现场可编程阵列板上实现了一个支持bp训练算法的神经网络系统,并成功地训练了一个可以对MNIST手写数字进行分类的神经网络。所实现的系统比大多数基于其他硬件架构的芯片级或板级系统表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computation of Backpropagation Learning Algorithm Using Neuron Machine Architecture
The neuron machine (NM) is a hardwarearchitecture that can be used to design efficient neural networksimulation systems. However, owing to its intrinsicunidirectional nature, NM architecture does not supportbackpropagation (BP) learning algorithms. This paperproposes novel schemes for NM architecture to support BPalgorithms. Reverse-mapping memories, synapse placementalgorithm, and a memory structure called triple rotatememory can be used to share synaptic weights in both the feedforwardand error BP stages without degrading thecomputational performance. An NM system supporting a BPtraining algorithm was implemented on a field-programmablegate array board and successfully trained a neural networkthat can classify MNIST handwritten digits. The implementedsystem showed a better performance over most chip-level orboard-level systems based on other hardware architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Software Quality Standards on Commercial Product Development and Customer Satisfaction for Software Industry in Pakistan Bringing Semantic Resources Together in the Cloud: From Theory to Application A Unified Architecture for a Dual Field ECC Processor Applicable to AES Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification HIPAA Based Predictive Analytics for an Adaptive and Descriptive Mobile Healthcare System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1