Choong-Keun Lee, Taeyoon Lee, Jae-Kyung Min, Albert Wang, SungPyo Lee, Jaesung Oh, Chang-Woo Park, Keunjun Choi
{"title":"一种用于双手操作教学的本体感觉触觉装置设计","authors":"Choong-Keun Lee, Taeyoon Lee, Jae-Kyung Min, Albert Wang, SungPyo Lee, Jaesung Oh, Chang-Woo Park, Keunjun Choi","doi":"10.1109/icra46639.2022.9811694","DOIUrl":null,"url":null,"abstract":"Manipulation involves a broad spectrum of skills, e.g., polishing, peeling, flipping, screwing, etc., requiring complex and delicate control over both force and position. This paper aims at designing an optimal haptic interface for providing a robot with direct demonstrations of human's innate intelligence in performing a wide range of force-based bimanual manipulation tasks. Based on the proprioceptive actuation mechanism, kinodynamic design parameters of the (dual) 7-DOF haptic arm are optimized so as to maximize the force transparency perceived by the operator over the full real-scale workspace of human arm while also ensuring other important constraints including robot-to-operator collision and singularity avoidance, payload, controlled stiffness, etc. 2.65 kg of average reflective mass and 1500 N/m of controlled stiffness is achieved over the entire workspace. We show the efficacy of our haptic interface by demonstrating various force-based manipulation tasks with a light-weight anthropomorphic bimanual manipulator, LIMS2-AMBIDEX [1].","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Proprioceptive Haptic Device Design for Teaching Bimanual Manipulation\",\"authors\":\"Choong-Keun Lee, Taeyoon Lee, Jae-Kyung Min, Albert Wang, SungPyo Lee, Jaesung Oh, Chang-Woo Park, Keunjun Choi\",\"doi\":\"10.1109/icra46639.2022.9811694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manipulation involves a broad spectrum of skills, e.g., polishing, peeling, flipping, screwing, etc., requiring complex and delicate control over both force and position. This paper aims at designing an optimal haptic interface for providing a robot with direct demonstrations of human's innate intelligence in performing a wide range of force-based bimanual manipulation tasks. Based on the proprioceptive actuation mechanism, kinodynamic design parameters of the (dual) 7-DOF haptic arm are optimized so as to maximize the force transparency perceived by the operator over the full real-scale workspace of human arm while also ensuring other important constraints including robot-to-operator collision and singularity avoidance, payload, controlled stiffness, etc. 2.65 kg of average reflective mass and 1500 N/m of controlled stiffness is achieved over the entire workspace. We show the efficacy of our haptic interface by demonstrating various force-based manipulation tasks with a light-weight anthropomorphic bimanual manipulator, LIMS2-AMBIDEX [1].\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Proprioceptive Haptic Device Design for Teaching Bimanual Manipulation
Manipulation involves a broad spectrum of skills, e.g., polishing, peeling, flipping, screwing, etc., requiring complex and delicate control over both force and position. This paper aims at designing an optimal haptic interface for providing a robot with direct demonstrations of human's innate intelligence in performing a wide range of force-based bimanual manipulation tasks. Based on the proprioceptive actuation mechanism, kinodynamic design parameters of the (dual) 7-DOF haptic arm are optimized so as to maximize the force transparency perceived by the operator over the full real-scale workspace of human arm while also ensuring other important constraints including robot-to-operator collision and singularity avoidance, payload, controlled stiffness, etc. 2.65 kg of average reflective mass and 1500 N/m of controlled stiffness is achieved over the entire workspace. We show the efficacy of our haptic interface by demonstrating various force-based manipulation tasks with a light-weight anthropomorphic bimanual manipulator, LIMS2-AMBIDEX [1].