{"title":"分散神经机器学习模型参数的建立","authors":"Aline Ioste, M. Finger","doi":"10.5753/eniac.2022.227342","DOIUrl":null,"url":null,"abstract":"The decentralized machine learning models face a bottleneck of high-cost communication. Trade-offs between communication and accuracy in decentralized learning have been addressed by theoretical approaches. Here we propose a new practical model that performs several local training operations before a communication round, choosing among several options. We show how to determine a configuration that dramatically reduces the communication burden between participant hosts, with a reduction in communication practice showing robust and accurate results both to IID and NON-IID data distributions.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing the Parameters of a Decentralized Neural Machine Learning Model\",\"authors\":\"Aline Ioste, M. Finger\",\"doi\":\"10.5753/eniac.2022.227342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decentralized machine learning models face a bottleneck of high-cost communication. Trade-offs between communication and accuracy in decentralized learning have been addressed by theoretical approaches. Here we propose a new practical model that performs several local training operations before a communication round, choosing among several options. We show how to determine a configuration that dramatically reduces the communication burden between participant hosts, with a reduction in communication practice showing robust and accurate results both to IID and NON-IID data distributions.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Establishing the Parameters of a Decentralized Neural Machine Learning Model
The decentralized machine learning models face a bottleneck of high-cost communication. Trade-offs between communication and accuracy in decentralized learning have been addressed by theoretical approaches. Here we propose a new practical model that performs several local training operations before a communication round, choosing among several options. We show how to determine a configuration that dramatically reduces the communication burden between participant hosts, with a reduction in communication practice showing robust and accurate results both to IID and NON-IID data distributions.