Haisheng Hu, A. Chinea, Stefano Grivet-Talocia, M. Miscuglio
{"title":"基于频率相关过松弛的高速信道快速迭代仿真","authors":"Haisheng Hu, A. Chinea, Stefano Grivet-Talocia, M. Miscuglio","doi":"10.1109/EPEPS.2011.6100202","DOIUrl":null,"url":null,"abstract":"This paper presents an optimized Waveform Relaxation solver for electrically-long high-speed channels terminated by nonlinear networks. The time-domain scattering operators of channel and terminations are cast as recursive convolutions and nonlinear discrete-time filters, respectively. A transverse and longitudinal decoupling is then applied to the channel operator, with the introduction of suitable relaxation sources, and solved iteratively until convergence. A frequency-dependent over-relaxation parameter is introduced in order to optimize the convergence rate. Numerical results show significantly reduced runtime and iteration count for critical benchmarks with respect to previous Waveform Relaxation formulations.","PeriodicalId":313560,"journal":{"name":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast iterative simulation of high-speed channels via frequency-dependent over-relaxation\",\"authors\":\"Haisheng Hu, A. Chinea, Stefano Grivet-Talocia, M. Miscuglio\",\"doi\":\"10.1109/EPEPS.2011.6100202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimized Waveform Relaxation solver for electrically-long high-speed channels terminated by nonlinear networks. The time-domain scattering operators of channel and terminations are cast as recursive convolutions and nonlinear discrete-time filters, respectively. A transverse and longitudinal decoupling is then applied to the channel operator, with the introduction of suitable relaxation sources, and solved iteratively until convergence. A frequency-dependent over-relaxation parameter is introduced in order to optimize the convergence rate. Numerical results show significantly reduced runtime and iteration count for critical benchmarks with respect to previous Waveform Relaxation formulations.\",\"PeriodicalId\":313560,\"journal\":{\"name\":\"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2011.6100202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2011.6100202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast iterative simulation of high-speed channels via frequency-dependent over-relaxation
This paper presents an optimized Waveform Relaxation solver for electrically-long high-speed channels terminated by nonlinear networks. The time-domain scattering operators of channel and terminations are cast as recursive convolutions and nonlinear discrete-time filters, respectively. A transverse and longitudinal decoupling is then applied to the channel operator, with the introduction of suitable relaxation sources, and solved iteratively until convergence. A frequency-dependent over-relaxation parameter is introduced in order to optimize the convergence rate. Numerical results show significantly reduced runtime and iteration count for critical benchmarks with respect to previous Waveform Relaxation formulations.