通过遗传算法学习启发式算法

R. Drechsler, B. Becker
{"title":"通过遗传算法学习启发式算法","authors":"R. Drechsler, B. Becker","doi":"10.1109/ASPDAC.1995.486244","DOIUrl":null,"url":null,"abstract":"In many applications of Computer Aided Design (CAD) of Integrated Circuits (ICs) the problems that have to be solved are NP-hard. Thus, exact algorithms are only applicable to small problem instances and many authors have presented heuristics to obtain solutions (non-optimal in general) for larger instances of these hard problems. In this paper we present a model for Genetic Algorithms (GA) to learn heuristics starting from a given set of basic operations. The difference to other previous applications of GAs in CAD of ICs is that the GA does not solve the problem directly. Rather, it develops strategies for solving the problem. To demonstrate the efficiency of our approach experimental results for a specific problem are presented.","PeriodicalId":119232,"journal":{"name":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Learning heuristics by genetic algorithms\",\"authors\":\"R. Drechsler, B. Becker\",\"doi\":\"10.1109/ASPDAC.1995.486244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applications of Computer Aided Design (CAD) of Integrated Circuits (ICs) the problems that have to be solved are NP-hard. Thus, exact algorithms are only applicable to small problem instances and many authors have presented heuristics to obtain solutions (non-optimal in general) for larger instances of these hard problems. In this paper we present a model for Genetic Algorithms (GA) to learn heuristics starting from a given set of basic operations. The difference to other previous applications of GAs in CAD of ICs is that the GA does not solve the problem directly. Rather, it develops strategies for solving the problem. To demonstrate the efficiency of our approach experimental results for a specific problem are presented.\",\"PeriodicalId\":119232,\"journal\":{\"name\":\"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.1995.486244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1995.486244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在集成电路计算机辅助设计(CAD)的许多应用中,需要解决的问题是np困难的。因此,精确算法只适用于小问题实例,许多作者提出了启发式方法来获得这些难题的较大实例的解决方案(通常是非最优的)。本文提出了一种遗传算法(GA)从一组给定的基本操作开始学习启发式的模型。与以往GA在集成电路CAD中的应用不同的是,GA并不直接解决问题。相反,它会制定解决问题的策略。为了证明我们方法的有效性,给出了一个具体问题的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning heuristics by genetic algorithms
In many applications of Computer Aided Design (CAD) of Integrated Circuits (ICs) the problems that have to be solved are NP-hard. Thus, exact algorithms are only applicable to small problem instances and many authors have presented heuristics to obtain solutions (non-optimal in general) for larger instances of these hard problems. In this paper we present a model for Genetic Algorithms (GA) to learn heuristics starting from a given set of basic operations. The difference to other previous applications of GAs in CAD of ICs is that the GA does not solve the problem directly. Rather, it develops strategies for solving the problem. To demonstrate the efficiency of our approach experimental results for a specific problem are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending pitchmatching algorithms to layouts with multiple grid constraints Routing space estimation and safe assignment for macro cell placement Formal verification of pipelined and superscalar processors Test pattern embedding in sequential circuits through cellular automata Automatic verification of memory systems which service their requests out of order
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1