{"title":"一种基于实时可视性的机器人抓取姿态估计方法","authors":"Shang-Wen Wong, Yu-Chen Chiu, Chi-Yi Tsai","doi":"10.1109/ICSSE58758.2023.10227244","DOIUrl":null,"url":null,"abstract":"This paper proposes a pose estimation system for robot grasping based on a novel Object Affordance Detection and Segmentation (OADS) network. The proposed system consists of four modules: (1) OADS network; (2) point cloud extraction; (3) object pose estimation; (4) grasp pose estimation. Based on the OADS network, the proposed system achieves affordance-based object pose estimation results. The proposed grasp pose estimation system is evaluated on a laboratory-made dual-arm robot. Experimental results show that the proposed system achieves high detection rate and high accuracy in affordance detection and segmentation tasks, leading to a high success rate in object grasping tasks with lab-made dual-arm robot.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Real-time Affordance-based Object Pose Estimation Approach for Robotic Grasp Pose Estimation\",\"authors\":\"Shang-Wen Wong, Yu-Chen Chiu, Chi-Yi Tsai\",\"doi\":\"10.1109/ICSSE58758.2023.10227244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a pose estimation system for robot grasping based on a novel Object Affordance Detection and Segmentation (OADS) network. The proposed system consists of four modules: (1) OADS network; (2) point cloud extraction; (3) object pose estimation; (4) grasp pose estimation. Based on the OADS network, the proposed system achieves affordance-based object pose estimation results. The proposed grasp pose estimation system is evaluated on a laboratory-made dual-arm robot. Experimental results show that the proposed system achieves high detection rate and high accuracy in affordance detection and segmentation tasks, leading to a high success rate in object grasping tasks with lab-made dual-arm robot.\",\"PeriodicalId\":280745,\"journal\":{\"name\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE58758.2023.10227244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Real-time Affordance-based Object Pose Estimation Approach for Robotic Grasp Pose Estimation
This paper proposes a pose estimation system for robot grasping based on a novel Object Affordance Detection and Segmentation (OADS) network. The proposed system consists of four modules: (1) OADS network; (2) point cloud extraction; (3) object pose estimation; (4) grasp pose estimation. Based on the OADS network, the proposed system achieves affordance-based object pose estimation results. The proposed grasp pose estimation system is evaluated on a laboratory-made dual-arm robot. Experimental results show that the proposed system achieves high detection rate and high accuracy in affordance detection and segmentation tasks, leading to a high success rate in object grasping tasks with lab-made dual-arm robot.