基于图像识别的花生荚原产地溯源研究

Han Zhongzhi, Deng Limiao, Yu Renshi
{"title":"基于图像识别的花生荚原产地溯源研究","authors":"Han Zhongzhi, Deng Limiao, Yu Renshi","doi":"10.1109/ICSSEM.2011.6081338","DOIUrl":null,"url":null,"abstract":"In order to investigate variety-specific reflected by peanut from different origin, we use a scanner to capture the images of the same species (Huayu 22) from three different regions, Each variety includes one front and two side images of 100 peanuts respectively. For each image, we have acquired 50 characteristics including shape, color and texture characteristics. We built artificial neural network model for identification based on these characteristics and those optimized by PCA, Result shows that for different species origin the maximal detectable rate reaches 100%. Methods and conclusions of this paper have positive significance to the DUS testing of peanut.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on origin traceability of peanut pods based on image recognition\",\"authors\":\"Han Zhongzhi, Deng Limiao, Yu Renshi\",\"doi\":\"10.1109/ICSSEM.2011.6081338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to investigate variety-specific reflected by peanut from different origin, we use a scanner to capture the images of the same species (Huayu 22) from three different regions, Each variety includes one front and two side images of 100 peanuts respectively. For each image, we have acquired 50 characteristics including shape, color and texture characteristics. We built artificial neural network model for identification based on these characteristics and those optimized by PCA, Result shows that for different species origin the maximal detectable rate reaches 100%. Methods and conclusions of this paper have positive significance to the DUS testing of peanut.\",\"PeriodicalId\":406311,\"journal\":{\"name\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSEM.2011.6081338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究不同产地花生所反映的品种特异性,我们利用扫描仪对同一品种(花育22号)在三个不同地区的图像进行了采集,每个品种分别包括100颗花生的正面和侧面图像。对于每张图像,我们获得了50个特征,包括形状、颜色和纹理特征。基于这些特征和主成分分析法优化的特征,建立了人工神经网络模型进行识别,结果表明,对于不同的物种来源,最大识别率达到100%。本文的方法和结论对花生DUS检测具有积极意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on origin traceability of peanut pods based on image recognition
In order to investigate variety-specific reflected by peanut from different origin, we use a scanner to capture the images of the same species (Huayu 22) from three different regions, Each variety includes one front and two side images of 100 peanuts respectively. For each image, we have acquired 50 characteristics including shape, color and texture characteristics. We built artificial neural network model for identification based on these characteristics and those optimized by PCA, Result shows that for different species origin the maximal detectable rate reaches 100%. Methods and conclusions of this paper have positive significance to the DUS testing of peanut.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXTRACTOR: An extensible framework for identifying Aspect-Oriented refactoring opportunities Scenario simulation of Sino-Singapore Tianjin Eco-city development based on System Dynamics Face recognition based on classifier combinations Computer aided design and manufacture of high precision cam Design of wireless sensor networks for density of natural gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1