{"title":"基于lcos的自适应光学元件在显微镜中的应用","authors":"A. Hermerschmidt, J. Haffner, T. Haist, W. Osten","doi":"10.1109/OMEMS.2008.4607842","DOIUrl":null,"url":null,"abstract":"Liquid crystal on silicon (LCoS)-based spatial light modulators (SLMs) are versatile adaptive optical elements. In microscopy, among their applications are aberration sensing and correction in wide-field microscopy and also the implementation of holographic optical tweezers. For aberration correction, the required scene-based wavefront sensing can be implemented as a modified correlation-based Shack-Hartmann approach where a high-resolution SLM first senses and then corrects the aberrations. For the implementation of holographic optical tweezers, the SLM serves as a variable optical beam-splitter which is addressed with holograms computed by fast algorithms implemented on the graphics processing unit (GPU) of a common PC almost in real-time.","PeriodicalId":402931,"journal":{"name":"2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applications of LCoS-based adaptive optical elements in microscopy\",\"authors\":\"A. Hermerschmidt, J. Haffner, T. Haist, W. Osten\",\"doi\":\"10.1109/OMEMS.2008.4607842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid crystal on silicon (LCoS)-based spatial light modulators (SLMs) are versatile adaptive optical elements. In microscopy, among their applications are aberration sensing and correction in wide-field microscopy and also the implementation of holographic optical tweezers. For aberration correction, the required scene-based wavefront sensing can be implemented as a modified correlation-based Shack-Hartmann approach where a high-resolution SLM first senses and then corrects the aberrations. For the implementation of holographic optical tweezers, the SLM serves as a variable optical beam-splitter which is addressed with holograms computed by fast algorithms implemented on the graphics processing unit (GPU) of a common PC almost in real-time.\",\"PeriodicalId\":402931,\"journal\":{\"name\":\"2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMEMS.2008.4607842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMEMS.2008.4607842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applications of LCoS-based adaptive optical elements in microscopy
Liquid crystal on silicon (LCoS)-based spatial light modulators (SLMs) are versatile adaptive optical elements. In microscopy, among their applications are aberration sensing and correction in wide-field microscopy and also the implementation of holographic optical tweezers. For aberration correction, the required scene-based wavefront sensing can be implemented as a modified correlation-based Shack-Hartmann approach where a high-resolution SLM first senses and then corrects the aberrations. For the implementation of holographic optical tweezers, the SLM serves as a variable optical beam-splitter which is addressed with holograms computed by fast algorithms implemented on the graphics processing unit (GPU) of a common PC almost in real-time.