使用预购在线搜索数据预测汽车销售

Philipp Wachter, Tobias Widmer, Achim Klein
{"title":"使用预购在线搜索数据预测汽车销售","authors":"Philipp Wachter, Tobias Widmer, Achim Klein","doi":"10.15439/2019F239","DOIUrl":null,"url":null,"abstract":"Sales forecasting is an essential element for implementing sustainable business strategies in the automotive industry. Accurate sales forecasts enhance the competitive edge of car manufacturers in the effort to optimize their production planning processes. We propose a forecasting technique that combines keyword-specific customer online search data with economic variables to predict monthly car sales. To isolate online search data related to pre-purchase information search, we follow a backward induction approach and identify those keywords that are frequently applied by search engine users. In a set of experiments using real-world sales data and Google Trends, we find that our keyword-specific forecasting technique reduces the out-of-sample error by 5% as compared to existing techniques without systematic keyword selection. We also find that our regression models outperform the benchmark model by an out-of-sample prediction accuracy of up to 27%.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Predicting Automotive Sales using Pre-Purchase Online Search Data\",\"authors\":\"Philipp Wachter, Tobias Widmer, Achim Klein\",\"doi\":\"10.15439/2019F239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sales forecasting is an essential element for implementing sustainable business strategies in the automotive industry. Accurate sales forecasts enhance the competitive edge of car manufacturers in the effort to optimize their production planning processes. We propose a forecasting technique that combines keyword-specific customer online search data with economic variables to predict monthly car sales. To isolate online search data related to pre-purchase information search, we follow a backward induction approach and identify those keywords that are frequently applied by search engine users. In a set of experiments using real-world sales data and Google Trends, we find that our keyword-specific forecasting technique reduces the out-of-sample error by 5% as compared to existing techniques without systematic keyword selection. We also find that our regression models outperform the benchmark model by an out-of-sample prediction accuracy of up to 27%.\",\"PeriodicalId\":168208,\"journal\":{\"name\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2019F239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

销售预测是汽车行业实施可持续经营战略的基本要素。准确的销售预测可以增强汽车制造商的竞争优势,从而优化其生产计划流程。我们提出了一种预测技术,将特定关键字的客户在线搜索数据与经济变量相结合,以预测每月的汽车销量。为了分离与预购信息搜索相关的在线搜索数据,我们采用逆向归纳方法并识别搜索引擎用户经常使用的关键字。在一组使用真实世界销售数据和谷歌趋势的实验中,我们发现,与没有系统关键字选择的现有技术相比,我们的关键字特定预测技术将样本外误差降低了5%。我们还发现,我们的回归模型优于基准模型的样本外预测精度高达27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Automotive Sales using Pre-Purchase Online Search Data
Sales forecasting is an essential element for implementing sustainable business strategies in the automotive industry. Accurate sales forecasts enhance the competitive edge of car manufacturers in the effort to optimize their production planning processes. We propose a forecasting technique that combines keyword-specific customer online search data with economic variables to predict monthly car sales. To isolate online search data related to pre-purchase information search, we follow a backward induction approach and identify those keywords that are frequently applied by search engine users. In a set of experiments using real-world sales data and Google Trends, we find that our keyword-specific forecasting technique reduces the out-of-sample error by 5% as compared to existing techniques without systematic keyword selection. We also find that our regression models outperform the benchmark model by an out-of-sample prediction accuracy of up to 27%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Support Vector Regression with Reduced Training Data A Deep Learning and Multimodal Ambient Sensing Framework for Human Activity Recognition Predicting Blood Glucose using an LSTM Neural Network License Plate Detection with Machine Learning Without Using Number Recognition Tool-assisted Surrogate Selection for Simulation Models in Energy Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1