M. Cintuglu, Ricardo de Azevedo, Tan Ma, O. Mohammed
{"title":"智能变电站保护与控制的实时实验分析","authors":"M. Cintuglu, Ricardo de Azevedo, Tan Ma, O. Mohammed","doi":"10.1109/ISGT-LA.2015.7381203","DOIUrl":null,"url":null,"abstract":"To reach the future smart grid vision, comprehensively equipped test beds are required for identification of the vulnerabilities, security concerns and the impact analysis of the new control and protection concepts. The future smart substations are expected to have enhanced capabilities such as wide-area situational awareness, interoperability, and self-sustained generation capability to achieve resilient power grid goals. Prior to field deployment, any new protection and control capabilities should pass rigorous tests. With this motivation, this paper presents a real-time experimental analysis for protection and control of smart substations in a state-of the-art test bed platform. A coordinated wide-area protection approach is proposed for transmission and distribution levels enabling interoperability between IEDs at different layers. An aggregated distributed generation and storage dispatch optimization method is proposed for self-sustained smart substations in case of outage such as a blackout situation. In order to validate the proposed protection and control methods, experimental results are given.","PeriodicalId":345318,"journal":{"name":"2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM)","volume":"412 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-time experimental analysis for protection and control of smart substations\",\"authors\":\"M. Cintuglu, Ricardo de Azevedo, Tan Ma, O. Mohammed\",\"doi\":\"10.1109/ISGT-LA.2015.7381203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reach the future smart grid vision, comprehensively equipped test beds are required for identification of the vulnerabilities, security concerns and the impact analysis of the new control and protection concepts. The future smart substations are expected to have enhanced capabilities such as wide-area situational awareness, interoperability, and self-sustained generation capability to achieve resilient power grid goals. Prior to field deployment, any new protection and control capabilities should pass rigorous tests. With this motivation, this paper presents a real-time experimental analysis for protection and control of smart substations in a state-of the-art test bed platform. A coordinated wide-area protection approach is proposed for transmission and distribution levels enabling interoperability between IEDs at different layers. An aggregated distributed generation and storage dispatch optimization method is proposed for self-sustained smart substations in case of outage such as a blackout situation. In order to validate the proposed protection and control methods, experimental results are given.\",\"PeriodicalId\":345318,\"journal\":{\"name\":\"2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM)\",\"volume\":\"412 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-LA.2015.7381203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-LA.2015.7381203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time experimental analysis for protection and control of smart substations
To reach the future smart grid vision, comprehensively equipped test beds are required for identification of the vulnerabilities, security concerns and the impact analysis of the new control and protection concepts. The future smart substations are expected to have enhanced capabilities such as wide-area situational awareness, interoperability, and self-sustained generation capability to achieve resilient power grid goals. Prior to field deployment, any new protection and control capabilities should pass rigorous tests. With this motivation, this paper presents a real-time experimental analysis for protection and control of smart substations in a state-of the-art test bed platform. A coordinated wide-area protection approach is proposed for transmission and distribution levels enabling interoperability between IEDs at different layers. An aggregated distributed generation and storage dispatch optimization method is proposed for self-sustained smart substations in case of outage such as a blackout situation. In order to validate the proposed protection and control methods, experimental results are given.