DSD-MatchingNet:可变形的稀疏到密集的特征匹配,用于学习精确的对应关系

Q1 Computer Science Virtual Reality Intelligent Hardware Pub Date : 2022-10-01 DOI:10.1016/j.vrih.2022.08.007
Yicheng Zhao , Han Zhang , Ping Lu , Ping Li , Enhua Wu , Bin Sheng
{"title":"DSD-MatchingNet:可变形的稀疏到密集的特征匹配,用于学习精确的对应关系","authors":"Yicheng Zhao ,&nbsp;Han Zhang ,&nbsp;Ping Lu ,&nbsp;Ping Li ,&nbsp;Enhua Wu ,&nbsp;Bin Sheng","doi":"10.1016/j.vrih.2022.08.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Exploring correspondences across multiview images is the basis of various computer vision tasks. However, most existing methods have limited accuracy under challenging conditions.</p></div><div><h3>Method</h3><p>To learn more robust and accurate correspondences, we propose DSD-MatchingNet for local feature matching in this study. First, we develop a deformable feature extraction module to obtain multilevel feature maps, which harvest contextual information from dynamic receptive fields. The dynamic receptive fields provided by the deformable convolution network ensure that our method obtains dense and robust correspondence. Second, we utilize sparse-to-dense matching with symmetry of correspondence to implement accurate pixel-level matching, which enables our method to produce more accurate correspondences.</p></div><div><h3>Result</h3><p>Experiments show that our proposed DSD-MatchingNet achieves a better performance on the image matching benchmark, as well as on the visual localization benchmark. Specifically, our method achieved 91.3% mean matching accuracy on the HPatches dataset and 99.3% visual localization recalls on the Aachen Day-Night dataset.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"4 5","pages":"Pages 432-443"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579622000821/pdf?md5=b3b9d92de1f1714de8cb8ab71d43808f&pid=1-s2.0-S2096579622000821-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DSD-MatchingNet: Deformable sparse-to-dense feature matching for learning accurate correspondences\",\"authors\":\"Yicheng Zhao ,&nbsp;Han Zhang ,&nbsp;Ping Lu ,&nbsp;Ping Li ,&nbsp;Enhua Wu ,&nbsp;Bin Sheng\",\"doi\":\"10.1016/j.vrih.2022.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Exploring correspondences across multiview images is the basis of various computer vision tasks. However, most existing methods have limited accuracy under challenging conditions.</p></div><div><h3>Method</h3><p>To learn more robust and accurate correspondences, we propose DSD-MatchingNet for local feature matching in this study. First, we develop a deformable feature extraction module to obtain multilevel feature maps, which harvest contextual information from dynamic receptive fields. The dynamic receptive fields provided by the deformable convolution network ensure that our method obtains dense and robust correspondence. Second, we utilize sparse-to-dense matching with symmetry of correspondence to implement accurate pixel-level matching, which enables our method to produce more accurate correspondences.</p></div><div><h3>Result</h3><p>Experiments show that our proposed DSD-MatchingNet achieves a better performance on the image matching benchmark, as well as on the visual localization benchmark. Specifically, our method achieved 91.3% mean matching accuracy on the HPatches dataset and 99.3% visual localization recalls on the Aachen Day-Night dataset.</p></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"4 5\",\"pages\":\"Pages 432-443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096579622000821/pdf?md5=b3b9d92de1f1714de8cb8ab71d43808f&pid=1-s2.0-S2096579622000821-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096579622000821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579622000821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

探索多视图图像之间的对应关系是各种计算机视觉任务的基础。然而,大多数现有方法在具有挑战性的条件下精度有限。方法为了获得更鲁棒和准确的对应关系,我们提出了DSD-MatchingNet进行局部特征匹配。首先,我们开发了一个可变形的特征提取模块,以获得多层次的特征映射,从动态接受域中获取上下文信息。可变形卷积网络提供的动态接收域保证了该方法得到密集的鲁棒对应。其次,我们利用稀疏到密集匹配与对称的对应实现精确的像素级匹配,使我们的方法产生更准确的对应。结果实验表明,我们提出的DSD-MatchingNet在图像匹配基准和视觉定位基准上都取得了较好的性能。具体来说,我们的方法在HPatches数据集上的平均匹配准确率为91.3%,在Aachen Day-Night数据集上的视觉定位召回率为99.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DSD-MatchingNet: Deformable sparse-to-dense feature matching for learning accurate correspondences

Background

Exploring correspondences across multiview images is the basis of various computer vision tasks. However, most existing methods have limited accuracy under challenging conditions.

Method

To learn more robust and accurate correspondences, we propose DSD-MatchingNet for local feature matching in this study. First, we develop a deformable feature extraction module to obtain multilevel feature maps, which harvest contextual information from dynamic receptive fields. The dynamic receptive fields provided by the deformable convolution network ensure that our method obtains dense and robust correspondence. Second, we utilize sparse-to-dense matching with symmetry of correspondence to implement accurate pixel-level matching, which enables our method to produce more accurate correspondences.

Result

Experiments show that our proposed DSD-MatchingNet achieves a better performance on the image matching benchmark, as well as on the visual localization benchmark. Specifically, our method achieved 91.3% mean matching accuracy on the HPatches dataset and 99.3% visual localization recalls on the Aachen Day-Night dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
Co-salient object detection with iterative purification and predictive optimization CURDIS: A template for incremental curve discretization algorithms and its application to conics Mesh representation matters: investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models Music-stylized hierarchical dance synthesis with user control Pre-training transformer with dual-branch context content module for table detection in document images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1