考虑串扰的基于深度强化学习的TSV阵列设计优化方法

Keunwoo Kim, Hyunwook Park, Daehwan Lho, Minsu Kim, Keeyoung Son, Kyungjune Son, Seongguk Kim, Taein Shin, Seonguk Choi, Joungho Kim
{"title":"考虑串扰的基于深度强化学习的TSV阵列设计优化方法","authors":"Keunwoo Kim, Hyunwook Park, Daehwan Lho, Minsu Kim, Keeyoung Son, Kyungjune Son, Seongguk Kim, Taein Shin, Seonguk Choi, Joungho Kim","doi":"10.1109/EDAPS50281.2020.9312906","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the through silicon via (TSV) array design optimization method using deep reinforcement learning (DRL) framework. The agent trained through the proposed method can provide an optimal TSV array that minimizes far-end crosstalk (FEXT) in one single step. We define the state, action, and reward that are elements of the Markov Decision Process (MDP) for optimizing the TSV array considering FEXT and train a deep q network (DQN) agent. For verification, we applied the proposed method to a 3 by 3 through silicon via array at stacked DRAM of High Bandwidth Memory (HBM). The network converged well, and as the result, the proposed method provided the optimal design that satisfies the target FEXT in which 3 dB lower than the initial design.","PeriodicalId":137699,"journal":{"name":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Reinforcement Learning-based Through Silicon Via (TSV) Array Design Optimization Method considering Crosstalk\",\"authors\":\"Keunwoo Kim, Hyunwook Park, Daehwan Lho, Minsu Kim, Keeyoung Son, Kyungjune Son, Seongguk Kim, Taein Shin, Seonguk Choi, Joungho Kim\",\"doi\":\"10.1109/EDAPS50281.2020.9312906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the through silicon via (TSV) array design optimization method using deep reinforcement learning (DRL) framework. The agent trained through the proposed method can provide an optimal TSV array that minimizes far-end crosstalk (FEXT) in one single step. We define the state, action, and reward that are elements of the Markov Decision Process (MDP) for optimizing the TSV array considering FEXT and train a deep q network (DQN) agent. For verification, we applied the proposed method to a 3 by 3 through silicon via array at stacked DRAM of High Bandwidth Memory (HBM). The network converged well, and as the result, the proposed method provided the optimal design that satisfies the target FEXT in which 3 dB lower than the initial design.\",\"PeriodicalId\":137699,\"journal\":{\"name\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS50281.2020.9312906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS50281.2020.9312906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了基于深度强化学习(DRL)框架的通硅孔(TSV)阵列设计优化方法。通过该方法训练的智能体可以提供最优的TSV阵列,使远端串扰(text)在单步内最小化。我们定义了状态、动作和奖励作为马尔可夫决策过程(MDP)的要素,用于优化考虑ext的TSV阵列,并训练了一个深度q网络(DQN)代理。为了验证,我们将所提出的方法应用于高带宽存储器(HBM)堆叠DRAM的3 × 3通硅通孔阵列。结果表明,该方法能够提供比初始设计低3db的满足目标FEXT的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning-based Through Silicon Via (TSV) Array Design Optimization Method considering Crosstalk
In this paper, we propose the through silicon via (TSV) array design optimization method using deep reinforcement learning (DRL) framework. The agent trained through the proposed method can provide an optimal TSV array that minimizes far-end crosstalk (FEXT) in one single step. We define the state, action, and reward that are elements of the Markov Decision Process (MDP) for optimizing the TSV array considering FEXT and train a deep q network (DQN) agent. For verification, we applied the proposed method to a 3 by 3 through silicon via array at stacked DRAM of High Bandwidth Memory (HBM). The network converged well, and as the result, the proposed method provided the optimal design that satisfies the target FEXT in which 3 dB lower than the initial design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gaussian Process surrogate model for variability analysis of RF circuits Power Distribution Network Optimization for On-Die Regulator with Laplace Transform Technique Multiphysics challenges with Heterogeneous Integrated Voltage Regulator based Power Delivery Architectures Sub-picosecond Skew Matching On Die SSN Methodology for High Speed IO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1