基于人工神经网络的未知动力学倒立摆运动姿态自适应控制

H. Chaoui, W. Gueaieb, M. Yagoub
{"title":"基于人工神经网络的未知动力学倒立摆运动姿态自适应控制","authors":"H. Chaoui, W. Gueaieb, M. Yagoub","doi":"10.1109/ICSCS.2009.5412202","DOIUrl":null,"url":null,"abstract":"In this paper, an artificial neural network (ANN) based control scheme is introduced for the inverted pendulum motion and posture control problem. The adaptive control strategy consists of a Lyapunov stability-based online weights adaptation that provides asymptotic tracking while learning the nonlinear inverted pendulum system's dynamics. Unlike other control strategies, no a priori offline training, weights initialization, or parameters knowledge is required. Experiments for different situations highlight the performance of the proposed controller in compensating for friction nonlinearities, in the form of Coulomb friction. Furthermore, the neural networks inherent parallelism makes them a good candidate for implementation in real-time electromechanical systems.","PeriodicalId":126072,"journal":{"name":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ANN-based adaptive motion and posture control of an inverted pendulum with unknown dynamics\",\"authors\":\"H. Chaoui, W. Gueaieb, M. Yagoub\",\"doi\":\"10.1109/ICSCS.2009.5412202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an artificial neural network (ANN) based control scheme is introduced for the inverted pendulum motion and posture control problem. The adaptive control strategy consists of a Lyapunov stability-based online weights adaptation that provides asymptotic tracking while learning the nonlinear inverted pendulum system's dynamics. Unlike other control strategies, no a priori offline training, weights initialization, or parameters knowledge is required. Experiments for different situations highlight the performance of the proposed controller in compensating for friction nonlinearities, in the form of Coulomb friction. Furthermore, the neural networks inherent parallelism makes them a good candidate for implementation in real-time electromechanical systems.\",\"PeriodicalId\":126072,\"journal\":{\"name\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCS.2009.5412202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCS.2009.5412202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对倒立摆运动和姿态控制问题,提出了一种基于人工神经网络的控制方案。自适应控制策略包括基于李雅普诺夫稳定性的在线权值自适应,在学习非线性倒立摆系统动力学的同时提供渐近跟踪。与其他控制策略不同,不需要先验的离线训练、权值初始化或参数知识。不同情况下的实验表明,所提出的控制器在补偿以库仑摩擦形式出现的摩擦非线性方面具有良好的性能。此外,神经网络固有的并行性使其成为实时机电系统实现的良好候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANN-based adaptive motion and posture control of an inverted pendulum with unknown dynamics
In this paper, an artificial neural network (ANN) based control scheme is introduced for the inverted pendulum motion and posture control problem. The adaptive control strategy consists of a Lyapunov stability-based online weights adaptation that provides asymptotic tracking while learning the nonlinear inverted pendulum system's dynamics. Unlike other control strategies, no a priori offline training, weights initialization, or parameters knowledge is required. Experiments for different situations highlight the performance of the proposed controller in compensating for friction nonlinearities, in the form of Coulomb friction. Furthermore, the neural networks inherent parallelism makes them a good candidate for implementation in real-time electromechanical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attributes regrouping in fuzzy rule based classification systems LaboRem: open lab for remote work Enhanced TRNG based on the coherent sampling Exploiting the imperfect knowledge of reference nodes positions in range based positioning systems Improved LMI formulation for robust dynamic output feedback controller design of discrete-time switched systems via switched Lyapunov function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1