基于深度学习的图像分割方法在微电子元件x射线图像中空洞检测中的比较

Tobias Schiele, A. Jansche, T. Bernthaler, Anton Kaiser, Daniela Pfister, Stefan Späth-Stockmeier, C. Hollerith
{"title":"基于深度学习的图像分割方法在微电子元件x射线图像中空洞检测中的比较","authors":"Tobias Schiele, A. Jansche, T. Bernthaler, Anton Kaiser, Daniela Pfister, Stefan Späth-Stockmeier, C. Hollerith","doi":"10.1109/CASE49439.2021.9551671","DOIUrl":null,"url":null,"abstract":"This work applies two state-of-the-art approaches for semantic and instance segmentation of solder voids in X-ray images. Void segmentation is both: an important task in quality and failure analysis of microelectronic components and a challenge to modern computer vision methods, e.g. convolutional neural networks (CNN). We use a CNN named U-Net to distinguish void pixels from the background by semantic segmentation. For instance segmentation, we evaluate another CNN, namely Mask-RCNN, which allows the identification of distinct voids instead of a simple binary mask. This approach allows to identify, separate, and evaluate overlapping voids or even voids that lie on top of each other. For the examined dataset, the U-Net outperforms the Mask-RCNN. Nevertheless, the result suggests a trade-off: Once the dataset contains more than 20% of overlapping voids area, the Mask-RCNN becomes technically favorable.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of deep learning-based image segmentation methods for the detection of voids in X-ray images of microelectronic components\",\"authors\":\"Tobias Schiele, A. Jansche, T. Bernthaler, Anton Kaiser, Daniela Pfister, Stefan Späth-Stockmeier, C. Hollerith\",\"doi\":\"10.1109/CASE49439.2021.9551671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work applies two state-of-the-art approaches for semantic and instance segmentation of solder voids in X-ray images. Void segmentation is both: an important task in quality and failure analysis of microelectronic components and a challenge to modern computer vision methods, e.g. convolutional neural networks (CNN). We use a CNN named U-Net to distinguish void pixels from the background by semantic segmentation. For instance segmentation, we evaluate another CNN, namely Mask-RCNN, which allows the identification of distinct voids instead of a simple binary mask. This approach allows to identify, separate, and evaluate overlapping voids or even voids that lie on top of each other. For the examined dataset, the U-Net outperforms the Mask-RCNN. Nevertheless, the result suggests a trade-off: Once the dataset contains more than 20% of overlapping voids area, the Mask-RCNN becomes technically favorable.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作应用了两种最先进的方法,用于x射线图像中焊接空洞的语义和实例分割。空隙分割既是微电子元件质量和失效分析中的一项重要任务,也是对卷积神经网络(CNN)等现代计算机视觉方法的挑战。我们使用一个名为U-Net的CNN,通过语义分割来区分背景和空白像素。例如分割,我们评估了另一个CNN,即mask - rcnn,它允许识别不同的空隙,而不是简单的二进制掩码。这种方法允许识别、分离和评估重叠的空洞,甚至是彼此重叠的空洞。对于检查的数据集,U-Net优于Mask-RCNN。然而,结果表明了一种权衡:一旦数据集包含超过20%的重叠空白区域,Mask-RCNN在技术上就变得有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of deep learning-based image segmentation methods for the detection of voids in X-ray images of microelectronic components
This work applies two state-of-the-art approaches for semantic and instance segmentation of solder voids in X-ray images. Void segmentation is both: an important task in quality and failure analysis of microelectronic components and a challenge to modern computer vision methods, e.g. convolutional neural networks (CNN). We use a CNN named U-Net to distinguish void pixels from the background by semantic segmentation. For instance segmentation, we evaluate another CNN, namely Mask-RCNN, which allows the identification of distinct voids instead of a simple binary mask. This approach allows to identify, separate, and evaluate overlapping voids or even voids that lie on top of each other. For the examined dataset, the U-Net outperforms the Mask-RCNN. Nevertheless, the result suggests a trade-off: Once the dataset contains more than 20% of overlapping voids area, the Mask-RCNN becomes technically favorable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1