Tobias Schiele, A. Jansche, T. Bernthaler, Anton Kaiser, Daniela Pfister, Stefan Späth-Stockmeier, C. Hollerith
{"title":"基于深度学习的图像分割方法在微电子元件x射线图像中空洞检测中的比较","authors":"Tobias Schiele, A. Jansche, T. Bernthaler, Anton Kaiser, Daniela Pfister, Stefan Späth-Stockmeier, C. Hollerith","doi":"10.1109/CASE49439.2021.9551671","DOIUrl":null,"url":null,"abstract":"This work applies two state-of-the-art approaches for semantic and instance segmentation of solder voids in X-ray images. Void segmentation is both: an important task in quality and failure analysis of microelectronic components and a challenge to modern computer vision methods, e.g. convolutional neural networks (CNN). We use a CNN named U-Net to distinguish void pixels from the background by semantic segmentation. For instance segmentation, we evaluate another CNN, namely Mask-RCNN, which allows the identification of distinct voids instead of a simple binary mask. This approach allows to identify, separate, and evaluate overlapping voids or even voids that lie on top of each other. For the examined dataset, the U-Net outperforms the Mask-RCNN. Nevertheless, the result suggests a trade-off: Once the dataset contains more than 20% of overlapping voids area, the Mask-RCNN becomes technically favorable.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of deep learning-based image segmentation methods for the detection of voids in X-ray images of microelectronic components\",\"authors\":\"Tobias Schiele, A. Jansche, T. Bernthaler, Anton Kaiser, Daniela Pfister, Stefan Späth-Stockmeier, C. Hollerith\",\"doi\":\"10.1109/CASE49439.2021.9551671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work applies two state-of-the-art approaches for semantic and instance segmentation of solder voids in X-ray images. Void segmentation is both: an important task in quality and failure analysis of microelectronic components and a challenge to modern computer vision methods, e.g. convolutional neural networks (CNN). We use a CNN named U-Net to distinguish void pixels from the background by semantic segmentation. For instance segmentation, we evaluate another CNN, namely Mask-RCNN, which allows the identification of distinct voids instead of a simple binary mask. This approach allows to identify, separate, and evaluate overlapping voids or even voids that lie on top of each other. For the examined dataset, the U-Net outperforms the Mask-RCNN. Nevertheless, the result suggests a trade-off: Once the dataset contains more than 20% of overlapping voids area, the Mask-RCNN becomes technically favorable.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of deep learning-based image segmentation methods for the detection of voids in X-ray images of microelectronic components
This work applies two state-of-the-art approaches for semantic and instance segmentation of solder voids in X-ray images. Void segmentation is both: an important task in quality and failure analysis of microelectronic components and a challenge to modern computer vision methods, e.g. convolutional neural networks (CNN). We use a CNN named U-Net to distinguish void pixels from the background by semantic segmentation. For instance segmentation, we evaluate another CNN, namely Mask-RCNN, which allows the identification of distinct voids instead of a simple binary mask. This approach allows to identify, separate, and evaluate overlapping voids or even voids that lie on top of each other. For the examined dataset, the U-Net outperforms the Mask-RCNN. Nevertheless, the result suggests a trade-off: Once the dataset contains more than 20% of overlapping voids area, the Mask-RCNN becomes technically favorable.