基于AdaBoost集成学习方法的呼吸分析肺癌早期检测

V. A. Binson, M. Subramoniam, G. Ragesh, Ajay Kumar
{"title":"基于AdaBoost集成学习方法的呼吸分析肺癌早期检测","authors":"V. A. Binson, M. Subramoniam, G. Ragesh, Ajay Kumar","doi":"10.1109/ACCESS51619.2021.9563337","DOIUrl":null,"url":null,"abstract":"This pilot study presents the application of the ensemble learning method, AdaBoost in the detection of early-stage lung cancers. To detect the presence and variations of volatile organic compound biomarkers in the expelled breath, an electronic nose system with metal oxide gas sensors is developed. The system is tested in ten lung cancer patients and fifteen healthy controls to differentiate the breath samples. The system attained an acceptable accuracy, sensitivity, and specificity of 76 %, 70 %, and 80 % respectively with an independent component analysis (ICA) dimensionality reduction technique. The system should be further studied with adequate number of early stage cancers to get a concluding remark about the performance of the system in the detection of early-stage lung cancers.","PeriodicalId":409648,"journal":{"name":"2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Early Detection of Lung Cancer Through Breath Analysis Using AdaBoost Ensemble Learning Method\",\"authors\":\"V. A. Binson, M. Subramoniam, G. Ragesh, Ajay Kumar\",\"doi\":\"10.1109/ACCESS51619.2021.9563337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This pilot study presents the application of the ensemble learning method, AdaBoost in the detection of early-stage lung cancers. To detect the presence and variations of volatile organic compound biomarkers in the expelled breath, an electronic nose system with metal oxide gas sensors is developed. The system is tested in ten lung cancer patients and fifteen healthy controls to differentiate the breath samples. The system attained an acceptable accuracy, sensitivity, and specificity of 76 %, 70 %, and 80 % respectively with an independent component analysis (ICA) dimensionality reduction technique. The system should be further studied with adequate number of early stage cancers to get a concluding remark about the performance of the system in the detection of early-stage lung cancers.\",\"PeriodicalId\":409648,\"journal\":{\"name\":\"2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCESS51619.2021.9563337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCESS51619.2021.9563337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本初步研究介绍了集成学习方法AdaBoost在早期肺癌检测中的应用。为了检测呼出气体中挥发性有机化合物生物标志物的存在和变化,开发了一种带有金属氧化物气体传感器的电子鼻系统。该系统在10名肺癌患者和15名健康对照者中进行了测试,以区分呼吸样本。通过独立成分分析(ICA)降维技术,该系统获得了可接受的准确性、灵敏度和特异性分别为76%、70%和80%。该系统在早期肺癌的检测中还有待进一步的研究,以得出该系统在早期肺癌检测中的性能结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early Detection of Lung Cancer Through Breath Analysis Using AdaBoost Ensemble Learning Method
This pilot study presents the application of the ensemble learning method, AdaBoost in the detection of early-stage lung cancers. To detect the presence and variations of volatile organic compound biomarkers in the expelled breath, an electronic nose system with metal oxide gas sensors is developed. The system is tested in ten lung cancer patients and fifteen healthy controls to differentiate the breath samples. The system attained an acceptable accuracy, sensitivity, and specificity of 76 %, 70 %, and 80 % respectively with an independent component analysis (ICA) dimensionality reduction technique. The system should be further studied with adequate number of early stage cancers to get a concluding remark about the performance of the system in the detection of early-stage lung cancers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Approach towards Face Recognition using Deep Reinforcement Learning, Viola Jones and K-nearest neighbor Different Communication Technologies and Challenges for Implementing UWSN Development of Virtual Reality Training module for Maithari of Martial Art Kalari Enhancement of Veterinary Vaginoscopic Image of Female Canines using Color Transfer Algorithm in 1αβ Color Space Multivariate Air Pollution Levels Forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1