利用卫星和再分析资料评估实际蒸散发的广义线性模型

M. G. Adán Faramiñán, Cristian Laino, Facundo Carmona, M. Holzman, R. Rivas
{"title":"利用卫星和再分析资料评估实际蒸散发的广义线性模型","authors":"M. G. Adán Faramiñán, Cristian Laino, Facundo Carmona, M. Holzman, R. Rivas","doi":"10.1109/ARGENCON55245.2022.9976397","DOIUrl":null,"url":null,"abstract":"An important issue for agricultural planning is to estimate evapotranspiration accurately due to its fundamental role in sustainable use of water resources. It is essential to have reliable and precise evapotranspiration (ET) measurements to improve models or products. This work aims to evaluate a generalized linear model (GLM) in order to estimate actual evapotranspiration of barley crop with satellite (Landsat, Sentinel, and CERES) and reanalysis (MERRA-2) data. The results obtained were compared with water balance values from an agrometeorological station. The GLM with the combination of MERRA-2/CERES/Sentinel 2 as input was the best performance (R2 = 0.59). The results show the feasibility of applying machine learning algorithms for obtaining actual evapotranspiration values in agricultural plains without ground agro-meteorological data.","PeriodicalId":318846,"journal":{"name":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a generalized linear model for the actual evapotranspiration using satellite and reanalysis data\",\"authors\":\"M. G. Adán Faramiñán, Cristian Laino, Facundo Carmona, M. Holzman, R. Rivas\",\"doi\":\"10.1109/ARGENCON55245.2022.9976397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important issue for agricultural planning is to estimate evapotranspiration accurately due to its fundamental role in sustainable use of water resources. It is essential to have reliable and precise evapotranspiration (ET) measurements to improve models or products. This work aims to evaluate a generalized linear model (GLM) in order to estimate actual evapotranspiration of barley crop with satellite (Landsat, Sentinel, and CERES) and reanalysis (MERRA-2) data. The results obtained were compared with water balance values from an agrometeorological station. The GLM with the combination of MERRA-2/CERES/Sentinel 2 as input was the best performance (R2 = 0.59). The results show the feasibility of applying machine learning algorithms for obtaining actual evapotranspiration values in agricultural plains without ground agro-meteorological data.\",\"PeriodicalId\":318846,\"journal\":{\"name\":\"2022 IEEE Biennial Congress of Argentina (ARGENCON)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Biennial Congress of Argentina (ARGENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARGENCON55245.2022.9976397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARGENCON55245.2022.9976397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于蒸散发在水资源可持续利用中的基础性作用,准确估算蒸散发是农业规划的一个重要问题。可靠和精确的蒸散发(ET)测量对于改进模型或产品至关重要。本文旨在利用卫星(Landsat、Sentinel和CERES)和MERRA-2再分析数据评估大麦作物实际蒸散量的广义线性模型(GLM)。所得结果与某农业气象站的水平衡值进行了比较。以MERRA-2/CERES/Sentinel 2组合为输入的GLM效果最佳(R2 = 0.59)。结果表明,在没有地面农业气象数据的情况下,应用机器学习算法获取农业平原实际蒸散发值是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of a generalized linear model for the actual evapotranspiration using satellite and reanalysis data
An important issue for agricultural planning is to estimate evapotranspiration accurately due to its fundamental role in sustainable use of water resources. It is essential to have reliable and precise evapotranspiration (ET) measurements to improve models or products. This work aims to evaluate a generalized linear model (GLM) in order to estimate actual evapotranspiration of barley crop with satellite (Landsat, Sentinel, and CERES) and reanalysis (MERRA-2) data. The results obtained were compared with water balance values from an agrometeorological station. The GLM with the combination of MERRA-2/CERES/Sentinel 2 as input was the best performance (R2 = 0.59). The results show the feasibility of applying machine learning algorithms for obtaining actual evapotranspiration values in agricultural plains without ground agro-meteorological data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Propuestas de normativas para la disposición final de equipamientos de un parque eólico al finalizar su vida productiva Proyecto Laboratorios remotos en carreras de ingeniería de la Universidad Nacional de Tucumán Control de un convertidor DC-DC con puentes duales activos para adaptar niveles de tensión en microrredes de DC usando linealización por realimentación Las Competencias Transversales en Ingeniería. El Seminario Taller Como Herramienta Metodológica Procedimiento de sintonizado de tanques resonantes LCC para carga inalámbrica de vehículos eléctricos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1