G. Wang, E. Toh, Y. Foo, S. Tripathy, S. Balakumar, G. Lo, G. Samudra, Y. Yeo
{"title":"采用e-Si0.7Ge0.3应力传递层和源/漏应力源,在绝缘子上硅-锗衬底上制备单轴应变硅n- fet,以增强性能","authors":"G. Wang, E. Toh, Y. Foo, S. Tripathy, S. Balakumar, G. Lo, G. Samudra, Y. Yeo","doi":"10.1109/ESSDERC.2007.4430940","DOIUrl":null,"url":null,"abstract":"We demonstrate a novel strained Si n-FET where the strain-transfer efficiency of lattice-mismatched source/drain (S/D) stressors is increased significantly by the interaction between an embedded Si0.7Ge0.3 stress transfer layer (STL) and the SiC source/drain (S/D) stressors. The compliance of the SiGe-OI STL caused significant uniaxial tensile strain to be induced in the Si channel. Devices with gate length LG down to 50 nm were fabricated. The strain effects resulted in 59% drive current improvement compared to unstrained Si control n-FETs. In addition, the incorporation of a tensile stress SiN liner improves Id,sat by an additional 10%. Improvement in source-side injection velocity as a result of the lattice interaction between the Si0.7Ge0.3 STL and S/D regions is further investigated.","PeriodicalId":103959,"journal":{"name":"ESSDERC 2007 - 37th European Solid State Device Research Conference","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniaxial strained silicon n-FETs on silicon-germanium-on-insulator substrates with an e-Si0.7Ge0.3 stress transfer layer and source/drain stressors for performance enhancement\",\"authors\":\"G. Wang, E. Toh, Y. Foo, S. Tripathy, S. Balakumar, G. Lo, G. Samudra, Y. Yeo\",\"doi\":\"10.1109/ESSDERC.2007.4430940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a novel strained Si n-FET where the strain-transfer efficiency of lattice-mismatched source/drain (S/D) stressors is increased significantly by the interaction between an embedded Si0.7Ge0.3 stress transfer layer (STL) and the SiC source/drain (S/D) stressors. The compliance of the SiGe-OI STL caused significant uniaxial tensile strain to be induced in the Si channel. Devices with gate length LG down to 50 nm were fabricated. The strain effects resulted in 59% drive current improvement compared to unstrained Si control n-FETs. In addition, the incorporation of a tensile stress SiN liner improves Id,sat by an additional 10%. Improvement in source-side injection velocity as a result of the lattice interaction between the Si0.7Ge0.3 STL and S/D regions is further investigated.\",\"PeriodicalId\":103959,\"journal\":{\"name\":\"ESSDERC 2007 - 37th European Solid State Device Research Conference\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSDERC 2007 - 37th European Solid State Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2007.4430940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2007 - 37th European Solid State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2007.4430940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uniaxial strained silicon n-FETs on silicon-germanium-on-insulator substrates with an e-Si0.7Ge0.3 stress transfer layer and source/drain stressors for performance enhancement
We demonstrate a novel strained Si n-FET where the strain-transfer efficiency of lattice-mismatched source/drain (S/D) stressors is increased significantly by the interaction between an embedded Si0.7Ge0.3 stress transfer layer (STL) and the SiC source/drain (S/D) stressors. The compliance of the SiGe-OI STL caused significant uniaxial tensile strain to be induced in the Si channel. Devices with gate length LG down to 50 nm were fabricated. The strain effects resulted in 59% drive current improvement compared to unstrained Si control n-FETs. In addition, the incorporation of a tensile stress SiN liner improves Id,sat by an additional 10%. Improvement in source-side injection velocity as a result of the lattice interaction between the Si0.7Ge0.3 STL and S/D regions is further investigated.