在具有挑战性的地形上协作四足操纵载荷的强化学习

Yandong Ji, Bike Zhang, K. Sreenath
{"title":"在具有挑战性的地形上协作四足操纵载荷的强化学习","authors":"Yandong Ji, Bike Zhang, K. Sreenath","doi":"10.1109/CASE49439.2021.9551481","DOIUrl":null,"url":null,"abstract":"Motivated towards performing missions in unstructured environments using a group of robots, this paper presents a reinforcement learning-based strategy for multiple quadrupedal robots executing collaborative manipulation tasks. By taking target position, velocity tracking, and height adjustment into account, we demonstrate that the proposed strategy enables four quadrupedal robots manipulating a payload to walk at desired linear and angular velocities, as well as over challenging terrain. The learned policy is robust to variations of payload mass and can be parameterized by different commanded velocities. (Video11https://youtu.be/i8kZSYdi9Nk)","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reinforcement Learning for Collaborative Quadrupedal Manipulation of a Payload over Challenging Terrain\",\"authors\":\"Yandong Ji, Bike Zhang, K. Sreenath\",\"doi\":\"10.1109/CASE49439.2021.9551481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated towards performing missions in unstructured environments using a group of robots, this paper presents a reinforcement learning-based strategy for multiple quadrupedal robots executing collaborative manipulation tasks. By taking target position, velocity tracking, and height adjustment into account, we demonstrate that the proposed strategy enables four quadrupedal robots manipulating a payload to walk at desired linear and angular velocities, as well as over challenging terrain. The learned policy is robust to variations of payload mass and can be parameterized by different commanded velocities. (Video11https://youtu.be/i8kZSYdi9Nk)\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了在非结构化环境中使用一组机器人执行任务,本文提出了一种基于强化学习的多四足机器人执行协作操作任务的策略。通过考虑目标位置、速度跟踪和高度调整,我们证明了所提出的策略能够使四个四足机器人操纵有效载荷以所需的线速度和角速度行走,以及在具有挑战性的地形上行走。该学习策略对载荷质量的变化具有鲁棒性,并可由不同的指令速度参数化。(Video11https: / / youtu.be / i8kZSYdi9Nk)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning for Collaborative Quadrupedal Manipulation of a Payload over Challenging Terrain
Motivated towards performing missions in unstructured environments using a group of robots, this paper presents a reinforcement learning-based strategy for multiple quadrupedal robots executing collaborative manipulation tasks. By taking target position, velocity tracking, and height adjustment into account, we demonstrate that the proposed strategy enables four quadrupedal robots manipulating a payload to walk at desired linear and angular velocities, as well as over challenging terrain. The learned policy is robust to variations of payload mass and can be parameterized by different commanded velocities. (Video11https://youtu.be/i8kZSYdi9Nk)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1