非丝状非易失性记忆元件在神经形态系统中的突触作用

Alessandro Fumarola, Y. Leblebici, P. Narayanan, R. Shelby, L. L. Sanchez, G. Burr, Kibong Moon, J. Jang, H. Hwang, Severin Sidler
{"title":"非丝状非易失性记忆元件在神经形态系统中的突触作用","authors":"Alessandro Fumarola, Y. Leblebici, P. Narayanan, R. Shelby, L. L. Sanchez, G. Burr, Kibong Moon, J. Jang, H. Hwang, Severin Sidler","doi":"10.1109/NVMTS47818.2019.8986194","DOIUrl":null,"url":null,"abstract":"Crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing highly energy-efficient neuromorphic computing systems. For Deep Neural Networks (DNN), where information can be encoded as analog voltage and current levels, such arrays can represent matrices of synaptic weights, implementing the matrix-vector multiplication needed for algorithms such as backpropagation in a massively-parallel fashion. Previous research demonstrated a large-scale hardware-software implementation based on phase-change memories and analyzed the potential speed and power advantages over GPU-based training. In this proceeding we will discuss extensions of this work leveraging a different class of memory elements. Using the concept of jump-tables we simulate the impact of real conductance response of non-filamentary resistive devices based on ${P} r_{0}.{}_{3}Ca_{0.7}$ Mn $O_{3}$ (PCMO). With the same approach as of [1], we simulate a three-layer neural network with training accuracy >90% on the MNIST dataset. The higher ON/OFF conductance ratio of improved Al[Mo/PCMO devices together with new programming strategies can lead to further accuracy improvement. Finally, we show that the bidirectional programming of Al[Mo/PCMO can be used to implement high-density neuromorphic systems with a single conductance per synapse, at only a slight degradation to accuracy.","PeriodicalId":199112,"journal":{"name":"2019 19th Non-Volatile Memory Technology Symposium (NVMTS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-filamentary non-volatile memory elements as synapses in neuromorphic systems\",\"authors\":\"Alessandro Fumarola, Y. Leblebici, P. Narayanan, R. Shelby, L. L. Sanchez, G. Burr, Kibong Moon, J. Jang, H. Hwang, Severin Sidler\",\"doi\":\"10.1109/NVMTS47818.2019.8986194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing highly energy-efficient neuromorphic computing systems. For Deep Neural Networks (DNN), where information can be encoded as analog voltage and current levels, such arrays can represent matrices of synaptic weights, implementing the matrix-vector multiplication needed for algorithms such as backpropagation in a massively-parallel fashion. Previous research demonstrated a large-scale hardware-software implementation based on phase-change memories and analyzed the potential speed and power advantages over GPU-based training. In this proceeding we will discuss extensions of this work leveraging a different class of memory elements. Using the concept of jump-tables we simulate the impact of real conductance response of non-filamentary resistive devices based on ${P} r_{0}.{}_{3}Ca_{0.7}$ Mn $O_{3}$ (PCMO). With the same approach as of [1], we simulate a three-layer neural network with training accuracy >90% on the MNIST dataset. The higher ON/OFF conductance ratio of improved Al[Mo/PCMO devices together with new programming strategies can lead to further accuracy improvement. Finally, we show that the bidirectional programming of Al[Mo/PCMO can be used to implement high-density neuromorphic systems with a single conductance per synapse, at only a slight degradation to accuracy.\",\"PeriodicalId\":199112,\"journal\":{\"name\":\"2019 19th Non-Volatile Memory Technology Symposium (NVMTS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th Non-Volatile Memory Technology Symposium (NVMTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NVMTS47818.2019.8986194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th Non-Volatile Memory Technology Symposium (NVMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NVMTS47818.2019.8986194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非易失性存储器(NVM)器件的横杆阵列代表了实现高能效神经形态计算系统的一种可能途径。对于深度神经网络(DNN),信息可以被编码为模拟电压和电流水平,这样的阵列可以表示突触权重矩阵,实现大规模并行方式的反向传播等算法所需的矩阵向量乘法。先前的研究展示了基于相变存储器的大规模硬件软件实现,并分析了基于gpu的训练的潜在速度和功耗优势。在本程序中,我们将讨论利用另一类内存元素的扩展。利用跳表的概念,基于${P} r_{0}.{}_{3}Ca_{0.7}$ Mn $O_{3}$ (PCMO)模拟了非长丝电阻器件实际电导响应的影响。采用与[1]相同的方法,我们在MNIST数据集上模拟了一个训练精度>90%的三层神经网络。改进的Al[Mo/PCMO器件具有更高的ON/OFF电导比和新的编程策略,可以进一步提高精度。最后,我们证明了Al[Mo/PCMO的双向编程可以用于实现每个突触具有单个电导的高密度神经形态系统,而精度只有轻微的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-filamentary non-volatile memory elements as synapses in neuromorphic systems
Crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing highly energy-efficient neuromorphic computing systems. For Deep Neural Networks (DNN), where information can be encoded as analog voltage and current levels, such arrays can represent matrices of synaptic weights, implementing the matrix-vector multiplication needed for algorithms such as backpropagation in a massively-parallel fashion. Previous research demonstrated a large-scale hardware-software implementation based on phase-change memories and analyzed the potential speed and power advantages over GPU-based training. In this proceeding we will discuss extensions of this work leveraging a different class of memory elements. Using the concept of jump-tables we simulate the impact of real conductance response of non-filamentary resistive devices based on ${P} r_{0}.{}_{3}Ca_{0.7}$ Mn $O_{3}$ (PCMO). With the same approach as of [1], we simulate a three-layer neural network with training accuracy >90% on the MNIST dataset. The higher ON/OFF conductance ratio of improved Al[Mo/PCMO devices together with new programming strategies can lead to further accuracy improvement. Finally, we show that the bidirectional programming of Al[Mo/PCMO can be used to implement high-density neuromorphic systems with a single conductance per synapse, at only a slight degradation to accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ferroelectric Hf1-xZrxO2 memories: device reliability and depolarization fields A novel memory test system with an electromagnet for STT-MRAM testing NVMTS 2019 TOC Reliability of 3D NAND flash memory with a focus on read voltage calibration from a system aspect Scalability Study on Ferroelectric-HfO2 Tunnel Junction Memory Based on Non-equilibrium Green Function Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1