电动汽车电池管理系统中电池电量状态自适应估计方法

Min-Joon Kim, Sung-Hun Chae, Yeonsoo Moon
{"title":"电动汽车电池管理系统中电池电量状态自适应估计方法","authors":"Min-Joon Kim, Sung-Hun Chae, Yeonsoo Moon","doi":"10.1109/ISOCC50952.2020.9332950","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive battery state-of-charge (SOC) estimation method for electric vehicle (EV) battery management system (BMS) is presented. In these days, many parts of EV have been developed with electrical systems, and it makes a growth of energy storage system named battery. Therefore, to make many type of batteries safer and more reliable, BMS is employed and implemented together in EV. The BMS monitors many kinds of battery states and is responsible to manage its charging and discharging. SOC is a key parameter in judging by BMS, and therefore it is certainly important to estimate the SOC accurately. Many SOC estimation methods have been studied, and extended Kalman-filter (EKF) based methods show the best performance. However, they have high computation complexity. In this paper, adaptively combination of EKF and conventional Coulomb counting method is proposed. Finally, the proposed adaptive method shows within 2% error with 70% decreased complexity compared to EKF.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptive Battery State-of-Charge Estimation Method for Electric Vehicle Battery Management System\",\"authors\":\"Min-Joon Kim, Sung-Hun Chae, Yeonsoo Moon\",\"doi\":\"10.1109/ISOCC50952.2020.9332950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an adaptive battery state-of-charge (SOC) estimation method for electric vehicle (EV) battery management system (BMS) is presented. In these days, many parts of EV have been developed with electrical systems, and it makes a growth of energy storage system named battery. Therefore, to make many type of batteries safer and more reliable, BMS is employed and implemented together in EV. The BMS monitors many kinds of battery states and is responsible to manage its charging and discharging. SOC is a key parameter in judging by BMS, and therefore it is certainly important to estimate the SOC accurately. Many SOC estimation methods have been studied, and extended Kalman-filter (EKF) based methods show the best performance. However, they have high computation complexity. In this paper, adaptively combination of EKF and conventional Coulomb counting method is proposed. Finally, the proposed adaptive method shows within 2% error with 70% decreased complexity compared to EKF.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9332950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对电动汽车电池管理系统(BMS),提出了一种自适应电池荷电状态(SOC)估计方法。近年来,电动汽车的许多部件都采用了电气系统,这使得以电池为代表的储能系统得到了发展。因此,为了使多种类型的电池更安全、更可靠,BMS在电动汽车中被同时采用和实施。BMS监控多种电池状态,并负责管理电池的充放电。SOC是BMS评价系统的一个关键参数,因此对SOC的准确估计具有重要意义。人们研究了许多SOC估计方法,其中基于扩展卡尔曼滤波(EKF)的方法表现出最好的性能。然而,它们具有很高的计算复杂度。本文提出了EKF与传统库仑计数法的自适应结合。结果表明,该方法误差在2%以内,复杂度降低70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Battery State-of-Charge Estimation Method for Electric Vehicle Battery Management System
In this paper, an adaptive battery state-of-charge (SOC) estimation method for electric vehicle (EV) battery management system (BMS) is presented. In these days, many parts of EV have been developed with electrical systems, and it makes a growth of energy storage system named battery. Therefore, to make many type of batteries safer and more reliable, BMS is employed and implemented together in EV. The BMS monitors many kinds of battery states and is responsible to manage its charging and discharging. SOC is a key parameter in judging by BMS, and therefore it is certainly important to estimate the SOC accurately. Many SOC estimation methods have been studied, and extended Kalman-filter (EKF) based methods show the best performance. However, they have high computation complexity. In this paper, adaptively combination of EKF and conventional Coulomb counting method is proposed. Finally, the proposed adaptive method shows within 2% error with 70% decreased complexity compared to EKF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Quadcopters Flight Simulation Considering the Influence of Wind Design of a CMOS Current-mode Squaring Circuit for Training Analog Neural Networks Instant and Accurate Instance Segmentation Equipped with Path Aggregation and Attention Gate 13.56 MHz High-Efficiency Power Transmitter and Receiver for Wirelessly Powered Biomedical Implants Investigation on Synaptic Characteristics of Interfacial Phase Change Memory for Artificial Synapse Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1