SpiNNaker和并行芯片多处理器的神经形态采样

Daniel R. Mendat, S. Chin, S. Furber, A. Andreou
{"title":"SpiNNaker和并行芯片多处理器的神经形态采样","authors":"Daniel R. Mendat, S. Chin, S. Furber, A. Andreou","doi":"10.1109/LASCAS.2016.7451094","DOIUrl":null,"url":null,"abstract":"We present a bio-inspired, hardware/software architecture to perform Markov Chain Monte Carlo sampling on probabilistic graphical models using energy aware hardware. We have developed algorithms and programming data flows for two recently developed multiprocessor architectures, the SpiNNaker and Parallella. We employ a neurally inspired sampling algorithm that abstracts the functionality of neurons in a biological network and exploits the neural dynamics to implement the sampling process. This algorithm maps nicely on the two hardware systems. Speedups as high as 1000 fold are achieved when performing inference using this approach, compared to algorithms running on traditional engineering workstations.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neuromorphic sampling on the SpiNNaker and parallella chip multiprocessors\",\"authors\":\"Daniel R. Mendat, S. Chin, S. Furber, A. Andreou\",\"doi\":\"10.1109/LASCAS.2016.7451094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a bio-inspired, hardware/software architecture to perform Markov Chain Monte Carlo sampling on probabilistic graphical models using energy aware hardware. We have developed algorithms and programming data flows for two recently developed multiprocessor architectures, the SpiNNaker and Parallella. We employ a neurally inspired sampling algorithm that abstracts the functionality of neurons in a biological network and exploits the neural dynamics to implement the sampling process. This algorithm maps nicely on the two hardware systems. Speedups as high as 1000 fold are achieved when performing inference using this approach, compared to algorithms running on traditional engineering workstations.\",\"PeriodicalId\":129875,\"journal\":{\"name\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS.2016.7451094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种生物启发的硬件/软件架构,使用能量感知硬件在概率图形模型上执行马尔可夫链蒙特卡罗采样。我们已经为最近开发的两种多处理器架构SpiNNaker和parallelella开发了算法和编程数据流。我们采用了一种神经启发的采样算法,该算法抽象了生物网络中神经元的功能,并利用神经动力学来实现采样过程。这个算法很好地映射到两个硬件系统上。与在传统工程工作站上运行的算法相比,使用这种方法执行推理时可以实现高达1000倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuromorphic sampling on the SpiNNaker and parallella chip multiprocessors
We present a bio-inspired, hardware/software architecture to perform Markov Chain Monte Carlo sampling on probabilistic graphical models using energy aware hardware. We have developed algorithms and programming data flows for two recently developed multiprocessor architectures, the SpiNNaker and Parallella. We employ a neurally inspired sampling algorithm that abstracts the functionality of neurons in a biological network and exploits the neural dynamics to implement the sampling process. This algorithm maps nicely on the two hardware systems. Speedups as high as 1000 fold are achieved when performing inference using this approach, compared to algorithms running on traditional engineering workstations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy harvesting with 3D-printed electrostatic generators A 30dBm PA for MTC communication in 65nm CMOS technology A low-cost microcontrolled dosimeter based on CD4007 devices for in vivo radiotherapy applications Telepresence using the kinect sensor and the NAO robot DC-DC switching converter as on-field self energy meter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1