教育用集成热光加热器硅光子电路的制造

Venkatesh Deenadayalan, P. Thomas, S. Preble
{"title":"教育用集成热光加热器硅光子电路的制造","authors":"Venkatesh Deenadayalan, P. Thomas, S. Preble","doi":"10.1109/ASMC.2019.8791832","DOIUrl":null,"url":null,"abstract":"Silicon photonics is revolutionizing computing, communication and sensing systems. As a result, there is a growing need to teach integrated photonic design, fabrication, testing and packaging principles. The focus of this paper is on an improved fabrication process for silicon waveguides that are compatible with most university cleanrooms (i-line photolithography) Furthermore, we establish a simple process for integrating metal heaters to realize thermo-optic tuning of silicon photonic circuits. The process optimization was performed by running extensive etch tests with PEVCD TEOS and carbon hard masks. PECVD TEOS was prone to erosion, while carbon proved more resilient and was chosen as the best hard mask material. The Photolithography was improved by adjusting the coating thickness of the BARC and resist layer. Etch resistance of the photoresist was improved by a simple curing process. The passive component fabrication is followed by addition of metal heater to thermally tune the waveguides. This optimized fabrication process is executed in a CMOS compatible academic fabrication facility with 365 nm i-line lithography. The bi-layer metal lift off process has Nichrome alloy as the heater metal because of this high electrical resistivity along with less resistive molybdenum for contacts.","PeriodicalId":287541,"journal":{"name":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication of Silicon photonic circuits with integrated thermo-optic heaters for education\",\"authors\":\"Venkatesh Deenadayalan, P. Thomas, S. Preble\",\"doi\":\"10.1109/ASMC.2019.8791832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon photonics is revolutionizing computing, communication and sensing systems. As a result, there is a growing need to teach integrated photonic design, fabrication, testing and packaging principles. The focus of this paper is on an improved fabrication process for silicon waveguides that are compatible with most university cleanrooms (i-line photolithography) Furthermore, we establish a simple process for integrating metal heaters to realize thermo-optic tuning of silicon photonic circuits. The process optimization was performed by running extensive etch tests with PEVCD TEOS and carbon hard masks. PECVD TEOS was prone to erosion, while carbon proved more resilient and was chosen as the best hard mask material. The Photolithography was improved by adjusting the coating thickness of the BARC and resist layer. Etch resistance of the photoresist was improved by a simple curing process. The passive component fabrication is followed by addition of metal heater to thermally tune the waveguides. This optimized fabrication process is executed in a CMOS compatible academic fabrication facility with 365 nm i-line lithography. The bi-layer metal lift off process has Nichrome alloy as the heater metal because of this high electrical resistivity along with less resistive molybdenum for contacts.\",\"PeriodicalId\":287541,\"journal\":{\"name\":\"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2019.8791832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2019.8791832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

硅光子学正在革新计算、通信和传感系统。因此,越来越需要教授集成光子设计、制造、测试和封装原理。本文的重点是改进硅波导的制造工艺,使其与大多数大学洁净室(i线光刻)兼容。此外,我们建立了一个简单的集成金属加热器的工艺,以实现硅光子电路的热光调谐。通过使用PEVCD TEOS和碳硬掩膜进行广泛的蚀刻测试,对工艺进行了优化。PECVD TEOS容易受到侵蚀,而碳被证明更有弹性,被选为最好的硬掩膜材料。通过调整BARC和抗蚀剂层的涂层厚度,提高了光刻性能。通过简单的固化工艺,提高了光刻胶的耐蚀性。在无源元件制造之后,添加金属加热器对波导进行热调谐。这种优化的制造工艺是在一个兼容CMOS的学术制造设备上用365纳米i线光刻技术执行的。由于镍铬合金的高电阻率以及触点的低电阻性钼,双层金属提升工艺采用镍铬合金作为加热金属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of Silicon photonic circuits with integrated thermo-optic heaters for education
Silicon photonics is revolutionizing computing, communication and sensing systems. As a result, there is a growing need to teach integrated photonic design, fabrication, testing and packaging principles. The focus of this paper is on an improved fabrication process for silicon waveguides that are compatible with most university cleanrooms (i-line photolithography) Furthermore, we establish a simple process for integrating metal heaters to realize thermo-optic tuning of silicon photonic circuits. The process optimization was performed by running extensive etch tests with PEVCD TEOS and carbon hard masks. PECVD TEOS was prone to erosion, while carbon proved more resilient and was chosen as the best hard mask material. The Photolithography was improved by adjusting the coating thickness of the BARC and resist layer. Etch resistance of the photoresist was improved by a simple curing process. The passive component fabrication is followed by addition of metal heater to thermally tune the waveguides. This optimized fabrication process is executed in a CMOS compatible academic fabrication facility with 365 nm i-line lithography. The bi-layer metal lift off process has Nichrome alloy as the heater metal because of this high electrical resistivity along with less resistive molybdenum for contacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and accurate defect classification for CMP process monitoring A Deep Learning Model for Identification of Defect Patterns in Semiconductor Wafer Map The Etching of Silicon Nitride in Phosphoric Acid with Novel Single Wafer Processor Methods for RFSOI Damascene Tungsten Contact Etching Using High-Speed Video Analysis for Defect Investigation and Process Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1