Kentaroh Watanabe, Erina Nagaoka, Daiji Yamashita, K. Toprasertpong, Y. Nakano, M. Sugiyama
{"title":"表面活化键合集成的GaAs/ Si电流平衡双结太阳能电池的研制","authors":"Kentaroh Watanabe, Erina Nagaoka, Daiji Yamashita, K. Toprasertpong, Y. Nakano, M. Sugiyama","doi":"10.23919/LTB-3D.2017.7947449","DOIUrl":null,"url":null,"abstract":"A thickness controlled dual junction GaAs//Si solar cell for current matching was fabricated and demonstrated. The optically thin GaAs top cell grown by metal-organic vapor phase epitaxy (MOVPE) was directly integrated on the Si bottom cell by surface-activated bonding (SAB) method. Owing to the optically thin (∼300 nm) GaAs top sub-cell, the operation of current-matched dual junction cell was observed under the standard 1 SUN illumination.","PeriodicalId":183993,"journal":{"name":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of GaAs//Si current-balanced dual junction solar cell integrated by surface-activated bonding\",\"authors\":\"Kentaroh Watanabe, Erina Nagaoka, Daiji Yamashita, K. Toprasertpong, Y. Nakano, M. Sugiyama\",\"doi\":\"10.23919/LTB-3D.2017.7947449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thickness controlled dual junction GaAs//Si solar cell for current matching was fabricated and demonstrated. The optically thin GaAs top cell grown by metal-organic vapor phase epitaxy (MOVPE) was directly integrated on the Si bottom cell by surface-activated bonding (SAB) method. Owing to the optically thin (∼300 nm) GaAs top sub-cell, the operation of current-matched dual junction cell was observed under the standard 1 SUN illumination.\",\"PeriodicalId\":183993,\"journal\":{\"name\":\"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/LTB-3D.2017.7947449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/LTB-3D.2017.7947449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of GaAs//Si current-balanced dual junction solar cell integrated by surface-activated bonding
A thickness controlled dual junction GaAs//Si solar cell for current matching was fabricated and demonstrated. The optically thin GaAs top cell grown by metal-organic vapor phase epitaxy (MOVPE) was directly integrated on the Si bottom cell by surface-activated bonding (SAB) method. Owing to the optically thin (∼300 nm) GaAs top sub-cell, the operation of current-matched dual junction cell was observed under the standard 1 SUN illumination.