A. Comuniello, A. D. Angelis, G. D. Angelis, A. Moschitta
{"title":"使用低功耗蓝牙协议的超声波飞行时间定位","authors":"A. Comuniello, A. D. Angelis, G. D. Angelis, A. Moschitta","doi":"10.1109/IWMN.2019.8805003","DOIUrl":null,"url":null,"abstract":"In this paper, application of the Bluetooth Low Energy (BLE) protocol is investigated, with the aim of achieving time-synchronization for Time of flight (ToF) measurements-based positioning. The proposed approach may provide a competitive solution for portable and wearable devices, medical devices, home automation systems, and sensor-based low-power systems for the Internet of Things (IoT). A simulation model was implemented for a 2D scenario using ToF measurements, considering a delay model and simulating an Additive White Gaussian Noise (AWGN) channel. The communication latencies were realistically modeled, using a dataset of measurements collected from a real device. The results show an achievable positioning accuracy of about 1 mm, significantly improving with respect to an unsynchronized Time Difference of Arrival (TDoA) positioning system, supervised using a BLE protocol [1]. The results demonstrate the feasibility of accurate and low-cost positioning systems, based on ToF measurements on ultrasound transmissions and triggered by BLE RF transmissions.","PeriodicalId":272577,"journal":{"name":"2019 IEEE International Symposium on Measurements & Networking (M&N)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultrasound Time of Flight based positioning using the Bluetooth Low Energy protocol\",\"authors\":\"A. Comuniello, A. D. Angelis, G. D. Angelis, A. Moschitta\",\"doi\":\"10.1109/IWMN.2019.8805003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, application of the Bluetooth Low Energy (BLE) protocol is investigated, with the aim of achieving time-synchronization for Time of flight (ToF) measurements-based positioning. The proposed approach may provide a competitive solution for portable and wearable devices, medical devices, home automation systems, and sensor-based low-power systems for the Internet of Things (IoT). A simulation model was implemented for a 2D scenario using ToF measurements, considering a delay model and simulating an Additive White Gaussian Noise (AWGN) channel. The communication latencies were realistically modeled, using a dataset of measurements collected from a real device. The results show an achievable positioning accuracy of about 1 mm, significantly improving with respect to an unsynchronized Time Difference of Arrival (TDoA) positioning system, supervised using a BLE protocol [1]. The results demonstrate the feasibility of accurate and low-cost positioning systems, based on ToF measurements on ultrasound transmissions and triggered by BLE RF transmissions.\",\"PeriodicalId\":272577,\"journal\":{\"name\":\"2019 IEEE International Symposium on Measurements & Networking (M&N)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Measurements & Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWMN.2019.8805003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2019.8805003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrasound Time of Flight based positioning using the Bluetooth Low Energy protocol
In this paper, application of the Bluetooth Low Energy (BLE) protocol is investigated, with the aim of achieving time-synchronization for Time of flight (ToF) measurements-based positioning. The proposed approach may provide a competitive solution for portable and wearable devices, medical devices, home automation systems, and sensor-based low-power systems for the Internet of Things (IoT). A simulation model was implemented for a 2D scenario using ToF measurements, considering a delay model and simulating an Additive White Gaussian Noise (AWGN) channel. The communication latencies were realistically modeled, using a dataset of measurements collected from a real device. The results show an achievable positioning accuracy of about 1 mm, significantly improving with respect to an unsynchronized Time Difference of Arrival (TDoA) positioning system, supervised using a BLE protocol [1]. The results demonstrate the feasibility of accurate and low-cost positioning systems, based on ToF measurements on ultrasound transmissions and triggered by BLE RF transmissions.