寻找创伤性脑损伤头部CT图像中血肿自动分类的独特形状特征

Tianxia Gong, Nengli Lim, Li Cheng, Hwee Kuan Lee, Bolan Su, C. Tan, Shimiao Li, C. Lim, B. Pang, C. Lee
{"title":"寻找创伤性脑损伤头部CT图像中血肿自动分类的独特形状特征","authors":"Tianxia Gong, Nengli Lim, Li Cheng, Hwee Kuan Lee, Bolan Su, C. Tan, Shimiao Li, C. Lim, B. Pang, C. Lee","doi":"10.1109/ICTAI.2013.45","DOIUrl":null,"url":null,"abstract":"Computer aided diagnosis (CAD) in medical imaging is of growing interest in recent years. Our proposed CAD system aims to enhance diagnosis and prognosis of traumatic brain injury (TBI) patients with hematomas. Hematoma caused by blood vessel rupture is the major lesion in TBI cases and is usually assessed using head computed tomography (CT). In our CAD system, we segment the hematoma region from each slice of a CT series, extract features from the hematoma segments, and automatically classify the hematoma types using machine learning methods. We propose two sets of shape based features for each segmented hematoma region. The first set contains primitive features describing the overall shape of a hematoma region. The features in the second set are based on the dissimilarities of the shapes of hematoma regions measured by geodesic distances. After feature extraction, we classify the hematoma regions into three types -- epidural hematoma, sub-dural hematoma, and intracerebral hematoma, using random forest. Each tree of the random forest votes one class for each hematoma, and the random forest takes the class label with the majority votes for the hematoma. As hematomas are volumetric in nature, some hematomas are observed across several consecutive slices in the same CT series. For each class, we add the votes from each hematoma slice that comprises the volumetric hematoma in that class, then we take the class with the majority of the summed votes as the class label for that volumetric hematoma. The overall classification accuracies for hematoma region from each CT slice are 80.7%, 81.3%, and 81.1% using primitive features only, geodesic distance features only, or both sets of features, respectively. For volumetric hematoma classification, the overall accuracies are 80.9%, 81.5%, and 81.5% respectively. The results are promising to radiologists and neurosurgeons specialized in this field of research.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Finding Distinctive Shape Features for Automatic Hematoma Classification in Head CT Images from Traumatic Brain Injuries\",\"authors\":\"Tianxia Gong, Nengli Lim, Li Cheng, Hwee Kuan Lee, Bolan Su, C. Tan, Shimiao Li, C. Lim, B. Pang, C. Lee\",\"doi\":\"10.1109/ICTAI.2013.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer aided diagnosis (CAD) in medical imaging is of growing interest in recent years. Our proposed CAD system aims to enhance diagnosis and prognosis of traumatic brain injury (TBI) patients with hematomas. Hematoma caused by blood vessel rupture is the major lesion in TBI cases and is usually assessed using head computed tomography (CT). In our CAD system, we segment the hematoma region from each slice of a CT series, extract features from the hematoma segments, and automatically classify the hematoma types using machine learning methods. We propose two sets of shape based features for each segmented hematoma region. The first set contains primitive features describing the overall shape of a hematoma region. The features in the second set are based on the dissimilarities of the shapes of hematoma regions measured by geodesic distances. After feature extraction, we classify the hematoma regions into three types -- epidural hematoma, sub-dural hematoma, and intracerebral hematoma, using random forest. Each tree of the random forest votes one class for each hematoma, and the random forest takes the class label with the majority votes for the hematoma. As hematomas are volumetric in nature, some hematomas are observed across several consecutive slices in the same CT series. For each class, we add the votes from each hematoma slice that comprises the volumetric hematoma in that class, then we take the class with the majority of the summed votes as the class label for that volumetric hematoma. The overall classification accuracies for hematoma region from each CT slice are 80.7%, 81.3%, and 81.1% using primitive features only, geodesic distance features only, or both sets of features, respectively. For volumetric hematoma classification, the overall accuracies are 80.9%, 81.5%, and 81.5% respectively. The results are promising to radiologists and neurosurgeons specialized in this field of research.\",\"PeriodicalId\":140309,\"journal\":{\"name\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2013.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,计算机辅助诊断(CAD)在医学影像中的应用越来越受到人们的关注。我们提出的CAD系统旨在提高对创伤性脑损伤(TBI)血肿患者的诊断和预后。血管破裂引起的血肿是TBI病例的主要病变,通常使用头部计算机断层扫描(CT)进行评估。在我们的CAD系统中,我们从CT序列的每个切片中分割血肿区域,从血肿段中提取特征,并使用机器学习方法自动分类血肿类型。我们为每个分割的血肿区域提出了两组基于形状的特征。第一组包含描述血肿区域整体形状的原始特征。在第二组的特征是基于血肿区域的形状的差异测量的测地线距离。在特征提取后,我们使用随机森林将血肿区域分为三种类型——硬膜外血肿、硬膜下血肿和脑内血肿。随机森林的每棵树为每个血肿投票一个类别,随机森林采用血肿的多数投票的类别标签。由于血肿在本质上是体积性的,一些血肿可以在同一CT序列的几个连续切片上观察到。对于每个类别,我们将包含该类别中体积血肿的每个血肿切片的投票相加,然后我们将票数总和最多的类别作为该体积血肿的类别标签。仅使用原始特征、仅使用测地线距离特征或同时使用两组特征,每张CT切片对血肿区域的总体分类准确率分别为80.7%、81.3%和81.1%。体积血肿分类的总体准确率分别为80.9%、81.5%和81.5%。这一结果对专门从事这一研究领域的放射科医生和神经外科医生很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding Distinctive Shape Features for Automatic Hematoma Classification in Head CT Images from Traumatic Brain Injuries
Computer aided diagnosis (CAD) in medical imaging is of growing interest in recent years. Our proposed CAD system aims to enhance diagnosis and prognosis of traumatic brain injury (TBI) patients with hematomas. Hematoma caused by blood vessel rupture is the major lesion in TBI cases and is usually assessed using head computed tomography (CT). In our CAD system, we segment the hematoma region from each slice of a CT series, extract features from the hematoma segments, and automatically classify the hematoma types using machine learning methods. We propose two sets of shape based features for each segmented hematoma region. The first set contains primitive features describing the overall shape of a hematoma region. The features in the second set are based on the dissimilarities of the shapes of hematoma regions measured by geodesic distances. After feature extraction, we classify the hematoma regions into three types -- epidural hematoma, sub-dural hematoma, and intracerebral hematoma, using random forest. Each tree of the random forest votes one class for each hematoma, and the random forest takes the class label with the majority votes for the hematoma. As hematomas are volumetric in nature, some hematomas are observed across several consecutive slices in the same CT series. For each class, we add the votes from each hematoma slice that comprises the volumetric hematoma in that class, then we take the class with the majority of the summed votes as the class label for that volumetric hematoma. The overall classification accuracies for hematoma region from each CT slice are 80.7%, 81.3%, and 81.1% using primitive features only, geodesic distance features only, or both sets of features, respectively. For volumetric hematoma classification, the overall accuracies are 80.9%, 81.5%, and 81.5% respectively. The results are promising to radiologists and neurosurgeons specialized in this field of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Algorithm Selection Approach for Planning Learning Useful Macro-actions for Planning with N-Grams Optimizing Dynamic Ensemble Selection Procedure by Evolutionary Extreme Learning Machines and a Noise Reduction Filter Motion-Driven Action-Based Planning Assessing Procedural Knowledge in Free-Text Answers through a Hybrid Semantic Web Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1