信号时频描述的参数与非参数方法的比较

E. Klejmova
{"title":"信号时频描述的参数与非参数方法的比较","authors":"E. Klejmova","doi":"10.1109/RADIOELEK.2015.7129030","DOIUrl":null,"url":null,"abstract":"This paper deals with comparing methods for time-frequency analysis such as time-frequency Fourier transform representation, multiple window method using Slepian sequences, time-frequency varying autoregressive process estimation and continuous wavelet analysis. To test their performance we apply these methods first on a simulated signal then on real recorded data from a metal plate acceleration by detonation products. For the autoregressive process we perform optimization of the lag order. The results are presented in graphical form and briefly discussed. Taking these results into account, combining the autoregressive process and wavelet transform is suggested.","PeriodicalId":193275,"journal":{"name":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of parametric and non parametric methods for signal time-frequency description\",\"authors\":\"E. Klejmova\",\"doi\":\"10.1109/RADIOELEK.2015.7129030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with comparing methods for time-frequency analysis such as time-frequency Fourier transform representation, multiple window method using Slepian sequences, time-frequency varying autoregressive process estimation and continuous wavelet analysis. To test their performance we apply these methods first on a simulated signal then on real recorded data from a metal plate acceleration by detonation products. For the autoregressive process we perform optimization of the lag order. The results are presented in graphical form and briefly discussed. Taking these results into account, combining the autoregressive process and wavelet transform is suggested.\",\"PeriodicalId\":193275,\"journal\":{\"name\":\"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADIOELEK.2015.7129030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2015.7129030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文比较了时频傅立叶变换表示、Slepian序列多窗口法、时频变自回归过程估计和连续小波分析等时频分析方法。为了测试它们的性能,我们首先将这些方法应用于模拟信号,然后应用于由爆炸产物引起的金属板加速度的真实记录数据。对于自回归过程,我们对滞后阶进行了优化。结果以图形形式呈现,并作了简要讨论。考虑到这些结果,建议将自回归过程与小波变换相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of parametric and non parametric methods for signal time-frequency description
This paper deals with comparing methods for time-frequency analysis such as time-frequency Fourier transform representation, multiple window method using Slepian sequences, time-frequency varying autoregressive process estimation and continuous wavelet analysis. To test their performance we apply these methods first on a simulated signal then on real recorded data from a metal plate acceleration by detonation products. For the autoregressive process we perform optimization of the lag order. The results are presented in graphical form and briefly discussed. Taking these results into account, combining the autoregressive process and wavelet transform is suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear noise estimation and compensation in GFDM based communication systems for cognitive radio networks Multilevel image thresholding by fireworks algorithm Railway network infrastructure model and localization of rolling stock position Proposed method of realization of RLCG meter Hardware and software front-end based on the USRP for experimental X-band Synthetic Aperture Radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1