用一种新的应变梯度理论模拟线键的应力集中

M. Lederer, B. Czerny, B. Nagl, A. Trnka, G. Khatibi, M. Thoben
{"title":"用一种新的应变梯度理论模拟线键的应力集中","authors":"M. Lederer, B. Czerny, B. Nagl, A. Trnka, G. Khatibi, M. Thoben","doi":"10.1109/EUROSIME.2013.6529910","DOIUrl":null,"url":null,"abstract":"Fatigue failure of wire-bonds is one of the key factors limiting the lifetime of power electronic devices. In IGBT (insulated gate bipolar transistor) modules, wire-bonds are exposed to repeated temperature changes leading to thermo-mechanical stresses in the constituent materials. Due to the geometry, stress concentrations arise at the interfaces of aluminum wires and silicon chips. In the framework of classical continuum mechanics, these stress concentrations show the characteristics of stress singularities. Nevertheless, IGBT modules reach lifetimes of about 30 years under service conditions. Therefore, it seems that classical continuum mechanics exaggerates the stress concentrations occurring at the material transitions. Hence, it is the subject of the present investigation to calculate more realistic stress distributions using a novel strain gradient theory.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of stress concentrations in wire-bonds using a novel strain gradient theory\",\"authors\":\"M. Lederer, B. Czerny, B. Nagl, A. Trnka, G. Khatibi, M. Thoben\",\"doi\":\"10.1109/EUROSIME.2013.6529910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue failure of wire-bonds is one of the key factors limiting the lifetime of power electronic devices. In IGBT (insulated gate bipolar transistor) modules, wire-bonds are exposed to repeated temperature changes leading to thermo-mechanical stresses in the constituent materials. Due to the geometry, stress concentrations arise at the interfaces of aluminum wires and silicon chips. In the framework of classical continuum mechanics, these stress concentrations show the characteristics of stress singularities. Nevertheless, IGBT modules reach lifetimes of about 30 years under service conditions. Therefore, it seems that classical continuum mechanics exaggerates the stress concentrations occurring at the material transitions. Hence, it is the subject of the present investigation to calculate more realistic stress distributions using a novel strain gradient theory.\",\"PeriodicalId\":270532,\"journal\":{\"name\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2013.6529910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线键疲劳失效是制约电力电子器件寿命的关键因素之一。在IGBT(绝缘栅双极晶体管)模块中,线键暴露于反复的温度变化中,导致构成材料中的热机械应力。由于几何形状的原因,应力集中出现在铝线和硅片的界面上。在经典连续介质力学的框架下,这些应力集中表现出应力奇点的特征。尽管如此,IGBT模块在使用条件下的使用寿命约为30年。因此,经典连续介质力学似乎夸大了发生在材料转变处的应力集中。因此,利用一种新的应变梯度理论计算更真实的应力分布是本研究的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of stress concentrations in wire-bonds using a novel strain gradient theory
Fatigue failure of wire-bonds is one of the key factors limiting the lifetime of power electronic devices. In IGBT (insulated gate bipolar transistor) modules, wire-bonds are exposed to repeated temperature changes leading to thermo-mechanical stresses in the constituent materials. Due to the geometry, stress concentrations arise at the interfaces of aluminum wires and silicon chips. In the framework of classical continuum mechanics, these stress concentrations show the characteristics of stress singularities. Nevertheless, IGBT modules reach lifetimes of about 30 years under service conditions. Therefore, it seems that classical continuum mechanics exaggerates the stress concentrations occurring at the material transitions. Hence, it is the subject of the present investigation to calculate more realistic stress distributions using a novel strain gradient theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of mixed-mode delamination by cohesive zone method Resistance electric filed dependence simulation of piezoresistive silicon pressure sensor and improvement by shield layer Reliability investigation of system in package devices toward aeronautic requirements: Methodology and application Adhesion of printed circuit boards with bending and the effect of reflow cycles Bonding wire life prediction model of the power module under power cycling test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1