序列对序列预测尖峰神经网络的FPGA实现

Changmin Ye, V. Kornijcuk, Jeeson Kim, D. Jeong
{"title":"序列对序列预测尖峰神经网络的FPGA实现","authors":"Changmin Ye, V. Kornijcuk, Jeeson Kim, D. Jeong","doi":"10.1109/ISOCC50952.2020.9332910","DOIUrl":null,"url":null,"abstract":"We propose a hardware-efficient method to implement sequence-predicting spiking neural networks (SPSNN) on a field-programmable gate array board. The SPSNN is capable of sequence-to-sequence prediction (associative recall) when fully trained using the learning by backpropagating action potential (LbAP) algorithm. The key to the hardware-efficiency lies in the rule-based event (routing) method in place of conventional lookup-table-based methods which are memory-hungry methods, particularly, when both forward and inverse lookups should be considered.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA implementation of sequence-to-sequence predicting spiking neural networks\",\"authors\":\"Changmin Ye, V. Kornijcuk, Jeeson Kim, D. Jeong\",\"doi\":\"10.1109/ISOCC50952.2020.9332910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a hardware-efficient method to implement sequence-predicting spiking neural networks (SPSNN) on a field-programmable gate array board. The SPSNN is capable of sequence-to-sequence prediction (associative recall) when fully trained using the learning by backpropagating action potential (LbAP) algorithm. The key to the hardware-efficiency lies in the rule-based event (routing) method in place of conventional lookup-table-based methods which are memory-hungry methods, particularly, when both forward and inverse lookups should be considered.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9332910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种在现场可编程门阵列板上实现序列预测尖峰神经网络(SPSNN)的硬件效率方法。当使用反向传播动作电位(LbAP)算法进行充分训练时,SPSNN能够进行序列到序列的预测(联想召回)。硬件效率的关键在于基于规则的事件(路由)方法,而不是传统的基于查询表的方法,后者是消耗内存的方法,特别是在需要考虑正向和反向查找时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA implementation of sequence-to-sequence predicting spiking neural networks
We propose a hardware-efficient method to implement sequence-predicting spiking neural networks (SPSNN) on a field-programmable gate array board. The SPSNN is capable of sequence-to-sequence prediction (associative recall) when fully trained using the learning by backpropagating action potential (LbAP) algorithm. The key to the hardware-efficiency lies in the rule-based event (routing) method in place of conventional lookup-table-based methods which are memory-hungry methods, particularly, when both forward and inverse lookups should be considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Quadcopters Flight Simulation Considering the Influence of Wind Design of a CMOS Current-mode Squaring Circuit for Training Analog Neural Networks Instant and Accurate Instance Segmentation Equipped with Path Aggregation and Attention Gate 13.56 MHz High-Efficiency Power Transmitter and Receiver for Wirelessly Powered Biomedical Implants Investigation on Synaptic Characteristics of Interfacial Phase Change Memory for Artificial Synapse Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1