Rahul Kumar, B. Kumari, Somesh Kumar, Manodipan Sahoo, Rohit Sharma
{"title":"温度和介电表面粗糙度对cu -石墨烯混合互连性能的影响分析","authors":"Rahul Kumar, B. Kumari, Somesh Kumar, Manodipan Sahoo, Rohit Sharma","doi":"10.1109/EDAPS50281.2020.9312905","DOIUrl":null,"url":null,"abstract":"To exploit the superior performance of copper and graphene interconnects, hybrid interconnects are seen as a promising interconnect technology for future technology nodes. Dielectric surface roughness is a process induced phenomenon that affects the performance of the interconnects. This paper presents an in-depth investigation on the impact of temperature and dielectric surface roughness on performance parameters of Cu-Graphene hybrid interconnects.","PeriodicalId":137699,"journal":{"name":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"52 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Temperature and Dielectric Surface Roughness dependent Performance Analysis of Cu-Graphene Hybrid Interconnects\",\"authors\":\"Rahul Kumar, B. Kumari, Somesh Kumar, Manodipan Sahoo, Rohit Sharma\",\"doi\":\"10.1109/EDAPS50281.2020.9312905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To exploit the superior performance of copper and graphene interconnects, hybrid interconnects are seen as a promising interconnect technology for future technology nodes. Dielectric surface roughness is a process induced phenomenon that affects the performance of the interconnects. This paper presents an in-depth investigation on the impact of temperature and dielectric surface roughness on performance parameters of Cu-Graphene hybrid interconnects.\",\"PeriodicalId\":137699,\"journal\":{\"name\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"52 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS50281.2020.9312905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS50281.2020.9312905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature and Dielectric Surface Roughness dependent Performance Analysis of Cu-Graphene Hybrid Interconnects
To exploit the superior performance of copper and graphene interconnects, hybrid interconnects are seen as a promising interconnect technology for future technology nodes. Dielectric surface roughness is a process induced phenomenon that affects the performance of the interconnects. This paper presents an in-depth investigation on the impact of temperature and dielectric surface roughness on performance parameters of Cu-Graphene hybrid interconnects.