{"title":"复合分割树视频编码","authors":"Weijia Zhu, A. Segall","doi":"10.1109/PCS.2018.8456309","DOIUrl":null,"url":null,"abstract":"During the exploration of video coding technology for potential next generation standards, the Joint Video Exploration Team (JVET) has been studying quad-tree plus binary-tree (QTBT) partition structures within its Joint Exploration Model (JEM). This QTBT partition structure provides more flexibility compared with the quad-tree only partition structure in HEVC. Here, we further consider the QTBT structure and extended it to allow quad-tree partitioning to be performed both before and after a binary-tree partition. We refer to this structure as a compound split tree (CST). To show the efficacy of the approach, we implemented the method into JEM7. The method achieved 1.25%, 2.11% and 1.87% BD-bitrate savings for Y, U and V components on average under the random-access configuration, respectively.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compound Split Tree for Video Coding\",\"authors\":\"Weijia Zhu, A. Segall\",\"doi\":\"10.1109/PCS.2018.8456309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the exploration of video coding technology for potential next generation standards, the Joint Video Exploration Team (JVET) has been studying quad-tree plus binary-tree (QTBT) partition structures within its Joint Exploration Model (JEM). This QTBT partition structure provides more flexibility compared with the quad-tree only partition structure in HEVC. Here, we further consider the QTBT structure and extended it to allow quad-tree partitioning to be performed both before and after a binary-tree partition. We refer to this structure as a compound split tree (CST). To show the efficacy of the approach, we implemented the method into JEM7. The method achieved 1.25%, 2.11% and 1.87% BD-bitrate savings for Y, U and V components on average under the random-access configuration, respectively.\",\"PeriodicalId\":433667,\"journal\":{\"name\":\"2018 Picture Coding Symposium (PCS)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2018.8456309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
During the exploration of video coding technology for potential next generation standards, the Joint Video Exploration Team (JVET) has been studying quad-tree plus binary-tree (QTBT) partition structures within its Joint Exploration Model (JEM). This QTBT partition structure provides more flexibility compared with the quad-tree only partition structure in HEVC. Here, we further consider the QTBT structure and extended it to allow quad-tree partitioning to be performed both before and after a binary-tree partition. We refer to this structure as a compound split tree (CST). To show the efficacy of the approach, we implemented the method into JEM7. The method achieved 1.25%, 2.11% and 1.87% BD-bitrate savings for Y, U and V components on average under the random-access configuration, respectively.