基于小波网络分类和快速小波变换训练的特征距离情感识别

Rim Afdhal, R. Ejbali, M. Zaied, C. Amar
{"title":"基于小波网络分类和快速小波变换训练的特征距离情感识别","authors":"Rim Afdhal, R. Ejbali, M. Zaied, C. Amar","doi":"10.1109/HIS.2014.7086205","DOIUrl":null,"url":null,"abstract":"This paper focuses on the issue of emotion recognition. It describes an emotion recognition system based on facial expression which contains four steps: detection of face's elements, localization of feature points, their tracking during a movie and facial expression classification. The first step is realized by the famous Viola and Jones algorithm. To localize feature points we have developed an automatic and easy method. To track them we used the optical flow. Finally the classification step is based on wavelet network using Fast Wavelet Transform FWT. The experimental results demonstrated the efficiency of our system.","PeriodicalId":161103,"journal":{"name":"2014 14th International Conference on Hybrid Intelligent Systems","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Emotion recognition using features distances classified by wavelets network and trained by fast wavelets transform\",\"authors\":\"Rim Afdhal, R. Ejbali, M. Zaied, C. Amar\",\"doi\":\"10.1109/HIS.2014.7086205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the issue of emotion recognition. It describes an emotion recognition system based on facial expression which contains four steps: detection of face's elements, localization of feature points, their tracking during a movie and facial expression classification. The first step is realized by the famous Viola and Jones algorithm. To localize feature points we have developed an automatic and easy method. To track them we used the optical flow. Finally the classification step is based on wavelet network using Fast Wavelet Transform FWT. The experimental results demonstrated the efficiency of our system.\",\"PeriodicalId\":161103,\"journal\":{\"name\":\"2014 14th International Conference on Hybrid Intelligent Systems\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2014.7086205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2014.7086205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文主要研究情感识别问题。描述了一种基于面部表情的情感识别系统,该系统包括四个步骤:人脸元素的检测、特征点的定位、特征点在电影中的跟踪和面部表情分类。第一步由著名的Viola和Jones算法实现。为了实现特征点的自动定位,我们开发了一种简单易行的方法。为了追踪它们,我们使用了光流。最后是基于小波网络的快速小波变换。实验结果证明了系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotion recognition using features distances classified by wavelets network and trained by fast wavelets transform
This paper focuses on the issue of emotion recognition. It describes an emotion recognition system based on facial expression which contains four steps: detection of face's elements, localization of feature points, their tracking during a movie and facial expression classification. The first step is realized by the famous Viola and Jones algorithm. To localize feature points we have developed an automatic and easy method. To track them we used the optical flow. Finally the classification step is based on wavelet network using Fast Wavelet Transform FWT. The experimental results demonstrated the efficiency of our system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid model for information filtering in location based social networks using text mining Intrusion detection using error correcting output code based ensemble Human action recognition via multi-scale 3D stationary wavelet analysis Research of customer behavior anomalies in big financial data Intelligent road surface quality evaluation using rough mereology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1