Mahnaz Arvaneh, Hamed Ahmadi, A. Azemi, M. Shajiee, Z. S. Dastgheib
{"title":"心电图PR间期动态建模预测阵发性心房颤动","authors":"Mahnaz Arvaneh, Hamed Ahmadi, A. Azemi, M. Shajiee, Z. S. Dastgheib","doi":"10.1109/ICBPE.2009.5384063","DOIUrl":null,"url":null,"abstract":"In this work, we propose a new method for prediction of Paroxysmal Atrial Fibrillation (PAF) by only using the PR interval of ECG signal. We first obtain a nonlinear structure and parameters of PR interval by a Genetic Programming (GP) based algorithm. Next, we use the neural networks for prediction of PAF. The inputs of the neural networks are the parameters of nonlinear model of the PR intervals. For the modeling and prediction we have limited ourselves to only 30 seconds of an ECG signal, which is one of the advantages of our proposed approach. For comparison purposes, we have modeled 30 seconds of ECG signals by time based modeling method and have compared prediction results of them.","PeriodicalId":384086,"journal":{"name":"2009 International Conference on Biomedical and Pharmaceutical Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Prediction of Paroxysmal Atrial Fibrillation by dynamic modeling of the PR interval of ECG\",\"authors\":\"Mahnaz Arvaneh, Hamed Ahmadi, A. Azemi, M. Shajiee, Z. S. Dastgheib\",\"doi\":\"10.1109/ICBPE.2009.5384063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a new method for prediction of Paroxysmal Atrial Fibrillation (PAF) by only using the PR interval of ECG signal. We first obtain a nonlinear structure and parameters of PR interval by a Genetic Programming (GP) based algorithm. Next, we use the neural networks for prediction of PAF. The inputs of the neural networks are the parameters of nonlinear model of the PR intervals. For the modeling and prediction we have limited ourselves to only 30 seconds of an ECG signal, which is one of the advantages of our proposed approach. For comparison purposes, we have modeled 30 seconds of ECG signals by time based modeling method and have compared prediction results of them.\",\"PeriodicalId\":384086,\"journal\":{\"name\":\"2009 International Conference on Biomedical and Pharmaceutical Engineering\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Biomedical and Pharmaceutical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBPE.2009.5384063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Biomedical and Pharmaceutical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBPE.2009.5384063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Paroxysmal Atrial Fibrillation by dynamic modeling of the PR interval of ECG
In this work, we propose a new method for prediction of Paroxysmal Atrial Fibrillation (PAF) by only using the PR interval of ECG signal. We first obtain a nonlinear structure and parameters of PR interval by a Genetic Programming (GP) based algorithm. Next, we use the neural networks for prediction of PAF. The inputs of the neural networks are the parameters of nonlinear model of the PR intervals. For the modeling and prediction we have limited ourselves to only 30 seconds of an ECG signal, which is one of the advantages of our proposed approach. For comparison purposes, we have modeled 30 seconds of ECG signals by time based modeling method and have compared prediction results of them.