胎儿唐氏综合征检测的自动计算机诊断工具

M. D. Simon, A. Kavitha
{"title":"胎儿唐氏综合征检测的自动计算机诊断工具","authors":"M. D. Simon, A. Kavitha","doi":"10.4018/978-1-5225-6316-7.CH010","DOIUrl":null,"url":null,"abstract":"Down syndrome is a genetic disorder and the chromosome abnormality observed in humans that can cause physical and mental abnormalities. It can never be cured or rectified. Instead it has to be identified in the fetus and prevented from being born. Many ultrasonographic markers like nuchal fold, nasal bone hypoplasia, femur length, and EIF are considered to be the symptoms of Down syndrome in the fetus. This chapter deals with the creation of automatic and computerized diagnostic tool for Down syndrome detection based on EIF. The proposed system consists of two phases: 1) training phase and 2) testing phase. In training phase, the fetal images with EIF and Down syndrome is analyzed and characteristics of EIF are collected. In testing phase, detection of Down syndrome is performed on the fetal image with EIF based on the knowledge cluster obtained using ESOM. The performance of the proposed system is analyzed in terms of sensitivity, accuracy, and specificity.","PeriodicalId":104783,"journal":{"name":"Histopathological Image Analysis in Medical Decision Making","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Computerized Diagnostic Tool for Down Syndrome Detection in Fetus\",\"authors\":\"M. D. Simon, A. Kavitha\",\"doi\":\"10.4018/978-1-5225-6316-7.CH010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Down syndrome is a genetic disorder and the chromosome abnormality observed in humans that can cause physical and mental abnormalities. It can never be cured or rectified. Instead it has to be identified in the fetus and prevented from being born. Many ultrasonographic markers like nuchal fold, nasal bone hypoplasia, femur length, and EIF are considered to be the symptoms of Down syndrome in the fetus. This chapter deals with the creation of automatic and computerized diagnostic tool for Down syndrome detection based on EIF. The proposed system consists of two phases: 1) training phase and 2) testing phase. In training phase, the fetal images with EIF and Down syndrome is analyzed and characteristics of EIF are collected. In testing phase, detection of Down syndrome is performed on the fetal image with EIF based on the knowledge cluster obtained using ESOM. The performance of the proposed system is analyzed in terms of sensitivity, accuracy, and specificity.\",\"PeriodicalId\":104783,\"journal\":{\"name\":\"Histopathological Image Analysis in Medical Decision Making\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histopathological Image Analysis in Medical Decision Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-6316-7.CH010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histopathological Image Analysis in Medical Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-6316-7.CH010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

唐氏综合症是一种遗传性疾病,在人类中观察到的染色体异常可导致身体和精神异常。它永远无法治愈或纠正。相反,它必须在胎儿中被识别出来,并在出生之前被阻止。许多超声标记如颈褶、鼻骨发育不全、股骨长度和EIF被认为是胎儿唐氏综合征的症状。本章讨论了基于EIF的唐氏综合征自动计算机诊断工具的创建。该系统包括两个阶段:1)训练阶段和2)测试阶段。在训练阶段,分析EIF和唐氏综合征的胎儿图像,收集EIF的特征。在检测阶段,基于ESOM获得的知识聚类,利用EIF对胎儿图像进行唐氏综合征检测。从灵敏度、准确性和特异性三个方面分析了该系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Computerized Diagnostic Tool for Down Syndrome Detection in Fetus
Down syndrome is a genetic disorder and the chromosome abnormality observed in humans that can cause physical and mental abnormalities. It can never be cured or rectified. Instead it has to be identified in the fetus and prevented from being born. Many ultrasonographic markers like nuchal fold, nasal bone hypoplasia, femur length, and EIF are considered to be the symptoms of Down syndrome in the fetus. This chapter deals with the creation of automatic and computerized diagnostic tool for Down syndrome detection based on EIF. The proposed system consists of two phases: 1) training phase and 2) testing phase. In training phase, the fetal images with EIF and Down syndrome is analyzed and characteristics of EIF are collected. In testing phase, detection of Down syndrome is performed on the fetal image with EIF based on the knowledge cluster obtained using ESOM. The performance of the proposed system is analyzed in terms of sensitivity, accuracy, and specificity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Medical Image Lossy Compression With LSTM Networks Microscopic Image Processing for the Analysis of Nosema Disease HE Stain Image Segmentation Using an Innovative Type-2 Fuzzy Set-Based Approach A Study on Segmentation of Leukocyte Image With Shannon's Entropy Multi-Criteria Decision-Making Techniques for Histopathological Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1