基于深度学习的越南语发音错误检测策略

Hoa Le Viet, Toai Tran Hoang Cong, Tuan Trinh Nguyen Bao, Duy Tran Ngoc Bao, N. H. Tuong
{"title":"基于深度学习的越南语发音错误检测策略","authors":"Hoa Le Viet, Toai Tran Hoang Cong, Tuan Trinh Nguyen Bao, Duy Tran Ngoc Bao, N. H. Tuong","doi":"10.1109/ICSSE58758.2023.10227159","DOIUrl":null,"url":null,"abstract":"Despite the growing interest in learning Vietnamese, pronunciation remains a significant challenge for many language learners. This study explores the use of deep learning techniques to automatically detect incorrect pronunciation in Vietnamese. Our approach utilizes a multi-task setup that incorporates an Audio Encoder and a Phoneme Recognizer, enabling the model to learn the alignment between phonemes and acoustic features. This alignment information is then employed by the Incorrect Pronunciation Detector to identify words with incorrect pronunciation. Notably, we propose a novel strategy for generating pronunciation features, which involves “manually” grouping phonemes of the same word, thereby facilitating the model’s learning process. To evaluate the effectiveness of the proposed method, we build a small non-native (L2) Vietnamese speech dataset for training and testing. Compared to the baseline model, our final result improves the accuracy by 5.2% and $F_{1}$ score by 21.14%.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning-Based Strategy for Vietnamese Incorrect Pronunciation Detection\",\"authors\":\"Hoa Le Viet, Toai Tran Hoang Cong, Tuan Trinh Nguyen Bao, Duy Tran Ngoc Bao, N. H. Tuong\",\"doi\":\"10.1109/ICSSE58758.2023.10227159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the growing interest in learning Vietnamese, pronunciation remains a significant challenge for many language learners. This study explores the use of deep learning techniques to automatically detect incorrect pronunciation in Vietnamese. Our approach utilizes a multi-task setup that incorporates an Audio Encoder and a Phoneme Recognizer, enabling the model to learn the alignment between phonemes and acoustic features. This alignment information is then employed by the Incorrect Pronunciation Detector to identify words with incorrect pronunciation. Notably, we propose a novel strategy for generating pronunciation features, which involves “manually” grouping phonemes of the same word, thereby facilitating the model’s learning process. To evaluate the effectiveness of the proposed method, we build a small non-native (L2) Vietnamese speech dataset for training and testing. Compared to the baseline model, our final result improves the accuracy by 5.2% and $F_{1}$ score by 21.14%.\",\"PeriodicalId\":280745,\"journal\":{\"name\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE58758.2023.10227159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管学习越南语的兴趣越来越大,但发音仍然是许多语言学习者面临的一个重大挑战。本研究探讨了使用深度学习技术来自动检测越南语中的错误发音。我们的方法利用了一个多任务设置,其中包含一个音频编码器和一个音素识别器,使模型能够学习音素和声学特征之间的对齐。然后,错误发音检测器使用这些对齐信息来识别发音不正确的单词。值得注意的是,我们提出了一种新的生成发音特征的策略,该策略涉及“手动”分组相同单词的音素,从而促进模型的学习过程。为了评估所提出方法的有效性,我们建立了一个小型的非母语(L2)越南语语音数据集用于训练和测试。与基线模型相比,我们的最终结果提高了5.2%的准确率和21.14%的$F_{1}$分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning-Based Strategy for Vietnamese Incorrect Pronunciation Detection
Despite the growing interest in learning Vietnamese, pronunciation remains a significant challenge for many language learners. This study explores the use of deep learning techniques to automatically detect incorrect pronunciation in Vietnamese. Our approach utilizes a multi-task setup that incorporates an Audio Encoder and a Phoneme Recognizer, enabling the model to learn the alignment between phonemes and acoustic features. This alignment information is then employed by the Incorrect Pronunciation Detector to identify words with incorrect pronunciation. Notably, we propose a novel strategy for generating pronunciation features, which involves “manually” grouping phonemes of the same word, thereby facilitating the model’s learning process. To evaluate the effectiveness of the proposed method, we build a small non-native (L2) Vietnamese speech dataset for training and testing. Compared to the baseline model, our final result improves the accuracy by 5.2% and $F_{1}$ score by 21.14%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS) Improvement in Proportional Energy Sharing and DC Bus Voltage Restoring for DC Microgrid in the Islanded Operation Mode A New Buck-Boost Converter Structure With Improved Efficiency Performance of Energy Harvesting Aided Multi-hop Mobile Relay Networks With and Without Using Cooperative Communication A New Novel of Prescribed Optimal Control and Its Application for Smart Damping System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1